IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2026-d161890.html
   My bibliography  Save this article

Prospecting for Oleaginous and Robust Chlorella spp. for Coal-Fired Flue-Gas-Mediated Biodiesel Production

Author

Listed:
  • Bohwa Kim

    (Advanced Biomass R&D Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
    These authors contributed equally to this work.)

  • Ramasamy Praveenkumar

    (Aquatic Biology Laboratory, and Renewable Materials and Nanotechnology Group, KU Leuven, Campus Kulak, 8500 Kortrijk, Belgium
    These authors contributed equally to this work.)

  • Eunji Choi

    (Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea)

  • Kyubock Lee

    (Graduate School of Energy Science and Technology, Chungnam National University (CNU), Daejeon 34134, Korea)

  • Sang Goo Jeon

    (Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea)

  • You-Kwan Oh

    (School of Chemical and Biomolecular Engineering, Pusan National University (PNU), Busan 46241, Korea)

Abstract

Prospecting for robust and high-productivity strains is a strategically important step in the microalgal biodiesel process. In this study, 30 local strains of Chlorella were evaluated in photobioreactors for biodiesel production using coal-fired flue-gas. Three strains (M082, M134, and KR-1) were sequentially selected based on cell growth, lipid content, and fatty acid composition under autotrophic and mixotrophic conditions. Under autotrophic conditions, M082 and M134 showed comparable lipid contents ( ca. 230 mg FAME [fatty acid methyl esters derived from microalgal lipids]/g cell) and productivities ( ca. 40 mg FAME/L·d) versus a reference strain (KR-1) outdoors with actual flue-gas (CO 2 , 13%). Interestingly, under mixotrophic conditions, M082 demonstrated, along with maximal lipid content (397 mg FAME/g cell), good tolerance to high temperature (40 °C). Furthermore, the fatty acid methyl esters met important international standards under all of the tested culture conditions. Thus, it was concluded that M082 can be a feedstock of choice for coal-fired, flue-gas-mediated biodiesel production.

Suggested Citation

  • Bohwa Kim & Ramasamy Praveenkumar & Eunji Choi & Kyubock Lee & Sang Goo Jeon & You-Kwan Oh, 2018. "Prospecting for Oleaginous and Robust Chlorella spp. for Coal-Fired Flue-Gas-Mediated Biodiesel Production," Energies, MDPI, vol. 11(8), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2026-:d:161890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    2. Abomohra, Abd El-Fatah & El-Sheekh, Mostafa & Hanelt, Dieter, 2017. "Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock," Renewable Energy, Elsevier, vol. 101(C), pages 1266-1272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Hsin Chen & Keat Teong Lee & Hwai Chyuan Ong, 2019. "Biofuel and Bioenergy Technology," Energies, MDPI, vol. 12(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakshmikandan, M. & Murugesan, A.G. & Wang, Shuang & El-Fatah Abomohra, Abd, 2021. "Optimization of acid hydrolysis on the green seaweed Valoniopsis pachynema and approach towards mixotrophic microalgal biomass and lipid production," Renewable Energy, Elsevier, vol. 164(C), pages 1052-1061.
    2. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    3. El-Sheekh, Mostafa & Abomohra, Abd El-Fatah & Eladel, Hamed & Battah, Mohamed & Mohammed, Soha, 2018. "Screening of different species of Scenedesmus isolated from Egyptian freshwater habitats for biodiesel production," Renewable Energy, Elsevier, vol. 129(PA), pages 114-120.
    4. Nida Khan & Kumarasamy Sudhakar & Rizalman Mamat, 2021. "Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality," Sustainability, MDPI, vol. 13(22), pages 1-30, November.
    5. Kabir, Faryal & Gulfraz, Muhammad & Raja, Ghazala Kaukab & Inam-ul-Haq, Muhammad & Awais, Muhammad & Mustafa, Muhammad Salman & Khan, Sami Ullah & Tlili, Iskander & Shadloo, Mostafa Safdari, 2020. "Screening of native hyper-lipid producing microalgae strains for biomass and lipid production," Renewable Energy, Elsevier, vol. 160(C), pages 1295-1307.
    6. Alan Rodrigo López-Rosales & Katia Ancona-Canché & Juan Carlos Chavarria-Hernandez & Felipe Barahona-Pérez & Tanit Toledano-Thompson & Gloria Garduño-Solórzano & Silvia López-Adrian & Blondy Canto-Can, 2018. "Fatty Acids, Hydrocarbons and Terpenes of Nannochloropsis and Nannochloris Isolates with Potential for Biofuel Production," Energies, MDPI, vol. 12(1), pages 1-21, December.
    7. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    8. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    9. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    10. Terigar, Beatrice G. & Theegala, Chandra S., 2014. "Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures," Renewable Energy, Elsevier, vol. 64(C), pages 238-243.
    11. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    12. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    13. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    14. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    15. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    16. Kumar, Ravi Ranjan & Sarkar, Debasis & Sen, Ramkrishna, 2024. "Simultaneously maximizing microalgal biomass and lipid productivities by machine learning driven modeling, global sensitivity analysis and multi-objective optimization for sustainable biodiesel produc," Applied Energy, Elsevier, vol. 358(C).
    17. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    18. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Thi Dong Phuong Nguyen & Duc Huy Nguyen & Jun Wei Lim & Chih-Kai Chang & Hui Yi Leong & Thi Ngoc Thu Tran & Thi Bich Hau Vu & Thi Trung Chinh Nguyen & Pau Loke Show, 2019. "Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater," Energies, MDPI, vol. 12(12), pages 1-12, June.
    20. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2026-:d:161890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.