IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1888-d158922.html
   My bibliography  Save this article

Formulation of the Phasors of Apparent Harmonic Power: Application to Non-Sinusoidal Three-Phase Power Systems

Author

Listed:
  • Pedro A. Blasco

    (Departamento de Ingeniería Eléctrica, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy, Spain)

  • Rafael Montoya-Mira

    (Departamento de Ingeniería Eléctrica, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy, Spain)

  • José M. Diez

    (Departamento de Ingeniería Eléctrica, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy, Spain)

  • Rafael Montoya

    (Departamento de Ingeniería Eléctrica, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy, Spain)

  • Miguel J. Reig

    (Departamento de Ingeniería Mecánica y Materiales, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy, Spain)

Abstract

In this work, the expression of the phasor of apparent power of harmonic distortion is formulated in the time domain. Applying this phasor along with the phasor of apparent unbalance power allows us to obtain a new set of phasors that include all of the inefficient power components appearing in the transfer of energy in non-linear and unbalanced systems. In this manner, a new model of inefficient power in electrical systems is developed. For each voltage harmonic of order ‘m’ and current harmonic of order ‘n’, a phasor of harmonic apparent power is obtained. Accuracy in the determination of the total apparent power of a system depends on the number of harmonics considered. Each phasor of apparent harmonic power is formed from six mutually orthogonal parameters or components that are calculated from the harmonic voltages at the nodes of the network and the circulating harmonic currents. To demonstrate the validity of the proposed formulation, a four-wire non-linear system formed by two nodes is assessed.

Suggested Citation

  • Pedro A. Blasco & Rafael Montoya-Mira & José M. Diez & Rafael Montoya & Miguel J. Reig, 2018. "Formulation of the Phasors of Apparent Harmonic Power: Application to Non-Sinusoidal Three-Phase Power Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1888-:d:158922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tahsin Fahima Orchi & Md Apel Mahmud & Amanullah Maung Than Oo, 2018. "Generalized Dynamical Modeling of Multiple Photovoltaic Units in a Grid-Connected System for Analyzing Dynamic Interactions," Energies, MDPI, vol. 11(2), pages 1-12, January.
    2. Kinan Wannous & Petr Toman, 2018. "Evaluation of Harmonics Impact on Digital Relays," Energies, MDPI, vol. 11(4), pages 1-20, April.
    3. Leonardo Rodrigues Limongi & Fabricio Bradaschia & Calebe Hermann de Oliveira Lima & Marcelo Cabral Cavalcanti, 2018. "Reactive Power and Current Harmonic Control Using a Dual Hybrid Power Filter for Unbalanced Non-Linear Loads," Energies, MDPI, vol. 11(6), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Lowczowski & Jozef Lorenc & Jozef Zawodniak & Grzegorz Dombek, 2020. "Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements," Energies, MDPI, vol. 13(5), pages 1-24, March.
    2. Dariusz Smugala & Michal Bonk, 2020. "Study of Arc Parameters of AC Relays Operating under Distorted Supply Voltage Conditions," Energies, MDPI, vol. 13(18), pages 1-13, September.
    3. Silvia Costa Ferreira & João Gabriel Luppi Foster & Robson Bauwelz Gonzatti & Rondineli Rodrigues Pereira & Guilherme Gonçalves Pinheiro & Bruno P. Braga Guimarães, 2023. "Online Adaptive Parameter Estimation of a Finite Control Set Model Predictive Controlled Hybrid Active Power Filter," Energies, MDPI, vol. 16(9), pages 1-22, April.
    4. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, vol. 11(7), pages 1-24, July.
    5. Subarto Kumar Ghosh & Tushar Kanti Roy & Md. Abu Hanif Pramanik & Md. Apel Mahmud, 2021. "Design of Nonlinear Backstepping Double-Integral Sliding Mode Controllers to Stabilize the DC-Bus Voltage for DC–DC Converters Feeding CPLs," Energies, MDPI, vol. 14(20), pages 1-16, October.
    6. Andrzej Grzegorz Lange & Grzegorz Redlarski, 2020. "Selection of C-Type Filters for Reactive Power Compensation and Filtration of Higher Harmonics Injected into the Transmission System by Arc Furnaces," Energies, MDPI, vol. 13(9), pages 1-19, May.
    7. Innocent Ewean Davidson & Oluwafemi Emmanuel Oni & Anuoluwapo Aluko & Elutunji Buraimoh, 2022. "Enhancing the Performance of Eskom’s Cahora Bassa HVDC Scheme and Harmonic Distortion Minimization of LCC-HVDC Scheme Using the VSC-HVDC Link," Energies, MDPI, vol. 15(11), pages 1-17, May.
    8. Jing Huang & John Boland, 2018. "Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales," Energies, MDPI, vol. 11(5), pages 1-12, May.
    9. Boris Cintula & Žaneta Eleschová & Matej Cenký & Peter Janiga & Jozef Bendík & Anton Beláň, 2021. "Three-Phase and Single-Phase Measurement of Overhead Power Line Impedance Evaluation," Energies, MDPI, vol. 14(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1888-:d:158922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.