IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1568-d152599.html
   My bibliography  Save this article

A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines

Author

Listed:
  • Devendra Sen

    (Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University, London UB8 3PH, UK)

  • Apostolos Pesyridis

    (Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University, London UB8 3PH, UK
    Metapulsion Engineering Limited, Northwood, Middlesex HA63LG, UK)

  • Andrew Lenton

    (Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University, London UB8 3PH, UK)

Abstract

This paper proposes a compression system for a scramjet, to be used as part of a combined cycle engine on a hypersonic transport vehicle that can achieve sustained flight at 8 Mach 8. Initially research into scramjet compression system and shock wave interaction was conducted to establish the foundation of the scramjet inlet and isolator sections. A Computational Fluid Dynamics (CFD) campaign was conducted, where the shock structure and flow characteristics was analysed between Mach 4.5–8. The compression system of a scramjet is of crucial importance in providing air at suitable Mach number, pressure and temperature to the combustion chamber. The use of turbojet engines in over-under configuration with the scramjet was investigated as well as the study of a combined cycle scramjet-ramjet configuration. It was identified that locating the scramjet in the centre with a rotated ramjet on either side, where its ramps make up the scramjet wall was the most optimal configuration, as it mitigated the effect of the oblique shocks propagating from the scramjet walls into the adjacent ramjet. Furthermore, this meant that the forebody of the vehicle could solely be used as the compression surface by the scramjet. In this paper, the sizing of the scramjet combustion chamber and nozzle were modified to match the flow properties of the oncoming flow with the purpose of producing the most optimum scramjet configuration for the cruise speed of Mach 8. CFD simulations showed that the scramjet inlet did not provide the levels of compression and stagnation pressure recovery initially required. However, it was found that the scramjet provided significantly more thrust than the drag of the aircraft at sustained Mach 8 flight, due to its utilisation of a very aerodynamic vehicle design.

Suggested Citation

  • Devendra Sen & Apostolos Pesyridis & Andrew Lenton, 2018. "A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines," Energies, MDPI, vol. 11(6), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1568-:d:152599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen M. Neill & Apostolos Pesyridis, 2017. "Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight," Energies, MDPI, vol. 10(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaolong Li & Zhixun Xia & Likun Ma & Xiang Zhao & Binbin Chen, 2019. "Numerical Study on the Solid Fuel Rocket Scramjet Combustor with Cavity," Energies, MDPI, vol. 12(7), pages 1-17, March.
    2. Andrew Ridgway & Ashish Alex Sam & Apostolos Pesyridis, 2018. "Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies," Energies, MDPI, vol. 11(12), pages 1-29, December.
    3. Omer Musa & Xiong Chen & Yingkun Li & Weixuan Li & Wenhe Liao, 2019. "Unsteady Simulation of Ignition of Turbulent Reactive Swirling Flow of Novel Design of Solid-Fuel Ramjet Motor," Energies, MDPI, vol. 12(13), pages 1-32, June.
    4. Sasha Veeran & Apostolos Pesyridis & Lionel Ganippa, 2018. "Ramjet Compression System for a Hypersonic Air Transportation Vehicle Combined Cycle Engine," Energies, MDPI, vol. 11(10), pages 1-22, September.
    5. Fan Li & Mingbo Sun & Zun Cai & Yong Chen & Yongchao Sun & Fei Li & Jiajian Zhu, 2020. "Effects of Additional Cavity Floor Injection on the Ignition and Combustion Processes in a Mach 2 Supersonic Flow," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasha Veeran & Apostolos Pesyridis & Lionel Ganippa, 2018. "Ramjet Compression System for a Hypersonic Air Transportation Vehicle Combined Cycle Engine," Energies, MDPI, vol. 11(10), pages 1-22, September.
    2. Andrew Ridgway & Ashish Alex Sam & Apostolos Pesyridis, 2018. "Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies," Energies, MDPI, vol. 11(12), pages 1-29, December.
    3. Fan Li & Mingbo Sun & Zun Cai & Yong Chen & Yongchao Sun & Fei Li & Jiajian Zhu, 2020. "Effects of Additional Cavity Floor Injection on the Ignition and Combustion Processes in a Mach 2 Supersonic Flow," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Dongpeng Jia & Yu Pan & Ning Wang & Chaoyang Liu & Kai Yang, 2021. "Combustion Modes and Unsteady Characteristics during the Condition Transition of a Scramjet Combustor," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1568-:d:152599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.