Ramjet Compression System for a Hypersonic Air Transportation Vehicle Combined Cycle Engine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Stephen M. Neill & Apostolos Pesyridis, 2017. "Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight," Energies, MDPI, vol. 10(11), pages 1-22, November.
- Devendra Sen & Apostolos Pesyridis & Andrew Lenton, 2018. "A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines," Energies, MDPI, vol. 11(6), pages 1-32, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrew Ridgway & Ashish Alex Sam & Apostolos Pesyridis, 2018. "Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies," Energies, MDPI, vol. 11(12), pages 1-29, December.
- Omer Musa & Xiong Chen & Yingkun Li & Weixuan Li & Wenhe Liao, 2019. "Unsteady Simulation of Ignition of Turbulent Reactive Swirling Flow of Novel Design of Solid-Fuel Ramjet Motor," Energies, MDPI, vol. 12(13), pages 1-32, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrew Ridgway & Ashish Alex Sam & Apostolos Pesyridis, 2018. "Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies," Energies, MDPI, vol. 11(12), pages 1-29, December.
- Fan Li & Mingbo Sun & Zun Cai & Yong Chen & Yongchao Sun & Fei Li & Jiajian Zhu, 2020. "Effects of Additional Cavity Floor Injection on the Ignition and Combustion Processes in a Mach 2 Supersonic Flow," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Omer Musa & Xiong Chen & Yingkun Li & Weixuan Li & Wenhe Liao, 2019. "Unsteady Simulation of Ignition of Turbulent Reactive Swirling Flow of Novel Design of Solid-Fuel Ramjet Motor," Energies, MDPI, vol. 12(13), pages 1-32, June.
- Chaolong Li & Zhixun Xia & Likun Ma & Xiang Zhao & Binbin Chen, 2019. "Numerical Study on the Solid Fuel Rocket Scramjet Combustor with Cavity," Energies, MDPI, vol. 12(7), pages 1-17, March.
- Devendra Sen & Apostolos Pesyridis & Andrew Lenton, 2018. "A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines," Energies, MDPI, vol. 11(6), pages 1-32, June.
- Dongpeng Jia & Yu Pan & Ning Wang & Chaoyang Liu & Kai Yang, 2021. "Combustion Modes and Unsteady Characteristics during the Condition Transition of a Scramjet Combustor," Energies, MDPI, vol. 14(9), pages 1-14, April.
More about this item
Keywords
ramjet; scramjet; hypersonic; combustion; hypersonic engine integration; combined cycle engine; CFD;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2558-:d:172025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.