IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1462-d150879.html
   My bibliography  Save this article

Loading History Effect on Creep Deformation of Rock

Author

Listed:
  • Wendong Yang

    (College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China)

  • Ranjith Pathegama Gamage

    (Deep Earth Energy Research Laboratory, Department of Civil Engineering, Monash University, 3800 Melbourne, VIC, Australia)

  • Chenchen Huang

    (College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China)

  • Guangyu Luo

    (College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China)

  • Jingjing Guo

    (College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China)

  • Shugang Wang

    (Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, China)

Abstract

The creep characteristics of rocks are very important for assessing the long-term stability of rock engineering structures. Two loading methods are commonly used in creep tests: single-step loading and multi-step loading. The multi-step loading method avoids the discrete influence of rock specimens on creep deformation and is relatively time-efficient. It has been widely accepted by researchers in the area of creep testing. However, in the process of multi-step loading, later deformation is affected by earlier loading. This is a key problem in considering the effects of loading history. Therefore, we intend to analyze the deformation laws of rock under multi-step loading and propose a method to correct the disturbance of the preceding load. Based on multi-step loading creep tests, the memory effect of creep deformation caused by loading history is discussed in this paper. A time-affected correction method for the creep strains under multi-step loading is proposed. From this correction method, the creep deformation under single-step loading can be estimated by the super-position of creeps obtained by the dissolution of a multistep creep. We compare the time-affected correction method to the coordinate translation method without considering loading history. The results show that the former results are more consistent with the experimental results. The coordinate translation method produces a large error which should be avoided.

Suggested Citation

  • Wendong Yang & Ranjith Pathegama Gamage & Chenchen Huang & Guangyu Luo & Jingjing Guo & Shugang Wang, 2018. "Loading History Effect on Creep Deformation of Rock," Energies, MDPI, vol. 11(6), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1462-:d:150879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Slizowski, J. & Lankof, L., 2003. "Salt-mudstones and rock-salt suitabilities for radioactive-waste storage systems: rheological properties," Applied Energy, Elsevier, vol. 75(1-2), pages 137-144, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wei & Zhang, Zhixin & Chen, Jie & Fan, Jinyang & Jiang, Deyi & Jjk, Daemen & Li, Yinping, 2019. "Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens," Energy, Elsevier, vol. 185(C), pages 682-694.
    2. Wang, Tongtao & Yan, Xiangzhen & Yang, Henglin & Yang, Xiujuan & Jiang, Tingting & Zhao, Shuai, 2013. "A new shape design method of salt cavern used as underground gas storage," Applied Energy, Elsevier, vol. 104(C), pages 50-61.
    3. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    4. Li, Peng & Li, Yinping & Shi, Xilin & Zhao, Kai & Liu, Xin & Ma, Hongling & Yang, Chunhe, 2021. "Prediction method for calculating the porosity of insoluble sediments for salt cavern gas storage applications," Energy, Elsevier, vol. 221(C).
    5. Wei, Liu & Jie, Chen & Deyi, Jiang & Xilin, Shi & Yinping, Li & Daemen, J.J.K. & Chunhe, Yang, 2016. "Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)," Applied Energy, Elsevier, vol. 178(C), pages 703-720.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1462-:d:150879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.