IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1375-d149436.html
   My bibliography  Save this article

A Communication-Free Decentralized Control for Grid-Connected Cascaded PV Inverters

Author

Listed:
  • Mei Su

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Chao Luo

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Xiaochao Hou

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Wenbin Yuan

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Zhangjie Liu

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Hua Han

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Josep M. Guerrero

    (Department of Energy Technology, Aalborg University, DK-9220 Aalborg East, Denmark)

Abstract

This paper proposes a communication-free decentralized control for grid-connected cascaded PV inverter systems. The cascaded PV inverter system is an AC-stacked architecture, which promotes the integration of low voltage (LV) distributed photovoltaic (PV) generators into the medium/high voltage (MV/HV) power grid. The proposed decentralized control is fully free of communication links and phase-locked loop (PLL). All cascaded inverters are controlled as current controlled voltage sources locally and independently to achieve maximum power point tracking (MPPT) and frequency self-synchronization with the power grid. As a result, control complexity as well as communication costs are reduced, and the system’s reliability is greatly enhanced compared with existing communication-based methods. System stability and dynamic performance are evaluated by small-signal analysis to guide the design of system parameters. The feasibility and effectiveness of the proposed solution are verified by simulation tests.

Suggested Citation

  • Mei Su & Chao Luo & Xiaochao Hou & Wenbin Yuan & Zhangjie Liu & Hua Han & Josep M. Guerrero, 2018. "A Communication-Free Decentralized Control for Grid-Connected Cascaded PV Inverters," Energies, MDPI, vol. 11(6), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1375-:d:149436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua Han & Lang Li & Lina Wang & Mei Su & Yue Zhao & Josep M. Guerrero, 2017. "A Novel Decentralized Economic Operation in Islanded AC Microgrids," Energies, MDPI, vol. 10(6), pages 1-18, June.
    2. Muxuan Xiao & Qianming Xu & Honglin Ouyang, 2017. "An Improved Modulation Strategy Combining Phase Shifted PWM and Phase Disposition PWM for Cascaded H-Bridge Inverters," Energies, MDPI, vol. 10(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeuntae Yoo & Gilsoo Jang & Jeong-Hwan Kim & Iseul Nam & Minhan Yoon & Seungmin Jung, 2019. "Accuracy Improvement Method of Energy Storage Utilization with DC Voltage Estimation in Large-Scale Photovoltaic Power Plants," Energies, MDPI, vol. 12(20), pages 1-15, October.
    2. Luigi Costanzo & Massimo Vitelli, 2019. "A Novel MPPT Technique for Single Stage Grid-Connected PV Systems: T4S," Energies, MDPI, vol. 12(23), pages 1-13, November.
    3. Xiaoqiang Guo & Jianhua Zhang & Jiale Zhou & Baocheng Wang, 2018. "A New Single-Phase Transformerless Current Source Inverter for Leakage Current Reduction," Energies, MDPI, vol. 11(7), pages 1-12, June.
    4. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    5. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haolan Liang & Zhangjie Liu & Hua Liu, 2019. "Stabilization Method Considering Disturbance Mitigation for DC Microgrids with Constant Power Loads," Energies, MDPI, vol. 12(5), pages 1-19, March.
    2. Hoon Lee & Jin-Wook Kang & Bong-Yeon Choi & Kyung-Min Kang & Mi-Na Kim & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2021. "Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation," Energies, MDPI, vol. 14(3), pages 1-26, January.
    3. Mustafa F. Mohammed & Mohammed A. Qasim, 2022. "Single Phase T-Type Multilevel Inverters for Renewable Energy Systems, Topology, Modulation, and Control Techniques: A Review," Energies, MDPI, vol. 15(22), pages 1-24, November.
    4. Felix Roemer & Massab Ahmad & Fengqi Chang & Markus Lienkamp, 2019. "Optimization of a Cascaded H-Bridge Inverter for Electric Vehicle Applications Including Cost Consideration," Energies, MDPI, vol. 12(22), pages 1-19, November.
    5. Kennedy Adinbo Aganah & Cristopher Luciano & Mandoye Ndoye & Gregory Murphy, 2018. "New Switched-Dual-Source Multilevel Inverter for Symmetrical and Asymmetrical Operation," Energies, MDPI, vol. 11(4), pages 1-13, April.
    6. Jean-Michel Clairand & Javier Rodríguez-García & Carlos Álvarez-Bel, 2018. "Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation," Energies, MDPI, vol. 11(11), pages 1-21, November.
    7. Mi Dong & Li Li & Lina Wang & Dongran Song & Zhangjie Liu & Xiaoyu Tian & Zhengguo Li & Yinghua Wang, 2018. "A Distributed Secondary Control Algorithm for Automatic Generation Control Considering EDP and Automatic Voltage Control in an AC Microgrid," Energies, MDPI, vol. 11(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1375-:d:149436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.