IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1351-d149057.html
   My bibliography  Save this article

A Multifunctional Dynamic Voltage Restorer for Power Quality Improvement

Author

Listed:
  • Dung Vo Tien

    (Department of Electrical Power Engineering, FEECS, VSB, Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Radomir Gono

    (Department of Electrical Power Engineering, FEECS, VSB, Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Zbigniew Leonowicz

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50370 Wroclaw, Poland)

Abstract

Power quality is a major concern in electrical power systems. The power quality disturbances such as sags, swells, harmonic distortion and other interruptions have an impact on the electrical devices and machines and in severe cases can cause serious damages. Therefore it is necessary to recognize and compensate all types of disturbances at an earliest time to ensure normal and efficient operation of the power system. To solve these problems, many types of power devices are used. At the present time, one of those devices, Dynamic Voltage Restorer (DVR) is the most efficient and effective device used in power distribution systems. In this paper, design and modeling of a new structure and a new control method of multifunctional DVRs for voltage quality correction are presented. The new control method was built in the stationary frame by combining Proportional Resonant controllers and Sequence-Decouple Resonant controllers. The performance of the device and this method under different conditions such as voltage swell, voltage sag due to symmetrical and unsymmetrical short circuit, starting of motors, and voltage distortion are described. Simulation result show the superior capability of the proposed DVR to improve power quality under different operating conditions and the effectiveness of the proposed method. The proposed new DVR controller is able to detect the voltage disturbances and control the converter to inject appropriate voltages independently for each phase and compensate to load voltage through three single-phase transformers.

Suggested Citation

  • Dung Vo Tien & Radomir Gono & Zbigniew Leonowicz, 2018. "A Multifunctional Dynamic Voltage Restorer for Power Quality Improvement," Energies, MDPI, vol. 11(6), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1351-:d:149057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyuan Wang & Haiying Lv & Qiang Sun & Yanqing Mi & Peng Gao, 2017. "A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles," Energies, MDPI, vol. 10(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Constantino Yáñez-Campos & Gustavo Cerda-Villafaña & Jose Merced Lozano-Garcia, 2019. "Two-Feeder Dynamic Voltage Restorer for Application in Custom Power Parks," Energies, MDPI, vol. 12(17), pages 1-20, August.
    2. Holman Bueno-Contreras & Germán Andrés Ramos & Ramon Costa-Castelló, 2021. "Power Quality Improvement through a UPQC and a Resonant Observer-Based MIMO Control Strategy," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Mohammadali Norouzi & Matti Lehtonen, 2019. "Providing Fault Ride-Through Capability of Turbo-Expander in a Thermal Power Plant," Energies, MDPI, vol. 12(21), pages 1-19, October.
    4. Nhlanhla Mbuli, 2023. "Dynamic Voltage Restorer as a Solution to Voltage Problems in Power Systems: Focus on Sags, Swells and Steady Fluctuations," Energies, MDPI, vol. 16(19), pages 1-26, October.
    5. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
    6. Zhaobin Du & Zhuo Chen & Guanquan Dai & Mohammed Yaqoob Javed & Chuanyong Shao & Haoqin Zhan, 2019. "Influence of DVR on Adjacent Load and Its Compensation Strategy Design Based on Externality Theory," Energies, MDPI, vol. 12(19), pages 1-19, September.
    7. Yuanqian Ma & Xianyong Xiao & Ying Wang, 2018. "Investment Strategy and Multi–Objective Optimization Scheme for Premium Power under the Background of the Opening of Electric Retail Side," Energies, MDPI, vol. 11(8), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilson Pavon & Esteban Inga & Silvio Simani & Matthew Armstrong, 2023. "Optimal Hierarchical Control for Smart Grid Inverters Using Stability Margin Evaluating Transient Voltage for Photovoltaic System," Energies, MDPI, vol. 16(5), pages 1-16, March.
    2. Ren, Guizhou & Wang, Jinzhong & Chen, Changlei & Wang, Haoran, 2021. "A variable-voltage ultra-capacitor/battery hybrid power source for extended range electric vehicle," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1351-:d:149057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.