IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1325-d148553.html
   My bibliography  Save this article

An Integrated Current-Voltage Compensator Design Method for Stable Constant Voltage and Current Source Operation of LLC Resonant Converters

Author

Listed:
  • Yeong-Jun Choi

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

  • Hwa-Rang Cha

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

  • Sang-Min Jung

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

  • Rae-Young Kim

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

This paper proposes a method to charge a lithium ion battery with an integrated compensator. Unlike the conventional charging method which uses separate voltage/current compensators based on a constant voltage-constant current charge profile, the proposed method uses a single compensator. The conventional method requires a complicated design process such as separate plant modeling for compensator design and the compensator tuning process in the frequency domain. Moreover, it has the disadvantage of a transient state between the mode change. However, the proposed method simplifies the complicated process and eliminates the transient response. The proposed compensator is applied to the LLC resonant converter and is designed to provide smooth and reliable performance during the entire charging process. In this paper, for the compensator design, the frequency domain models of the LLC resonant converter at the constant voltage and constant current charging mode are derived including the impedance model of the battery pack. Additionally, the worst condition of the compensator design during the entire charging process is considered. To demonstrate the effectiveness of the proposed method, the theoretical design procedure is presented in this paper, and it is verified through experimental results using a 300 W LLC converter and battery pack.

Suggested Citation

  • Yeong-Jun Choi & Hwa-Rang Cha & Sang-Min Jung & Rae-Young Kim, 2018. "An Integrated Current-Voltage Compensator Design Method for Stable Constant Voltage and Current Source Operation of LLC Resonant Converters," Energies, MDPI, vol. 11(6), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1325-:d:148553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaogang Wu & Wenwen Shi & Jiuyu Du, 2017. "Multi-Objective Optimal Charging Method for Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-18, August.
    2. Muhammad Umair Ali & Sarvar Hussain Nengroo & Muhamad Adil Khan & Kamran Zeb & Muhammad Ahmad Kamran & Hee-Je Kim, 2018. "A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control," Energies, MDPI, vol. 11(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwa-Rang Cha & Rae-Young Kim & Kyung-Ho Park & Yeong-Jun Choi, 2019. "Modeling and Control of Double-Sided LCC Compensation Topology with Semi-Bridgeless Active Rectifier for Inductive Power Transfer System," Energies, MDPI, vol. 12(20), pages 1-19, October.
    2. HwaPyeong Park & Mina Kim & HakSun Kim & JeeHoon Jung, 2019. "Design Methodology of Tightly Regulated Dual-Output LLC Resonant Converter Using PFM-APWM Hybrid Control Method," Energies, MDPI, vol. 12(11), pages 1-20, June.
    3. Young-Hwa Park & Rae-Young Kim & Yeong-Jun Choi, 2021. "An Active Cascaded Battery Voltage Balancing Circuit Based on Multi-Winding Transformer with Small Magnetizing Inductance," Energies, MDPI, vol. 14(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    2. Haitao Min & Boshi Wang & Weiyi Sun & Zhaopu Zhang & Yuanbin Yu & Yanzhou Zhang, 2020. "Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control," Energies, MDPI, vol. 13(7), pages 1-21, April.
    3. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    4. Jian Yang & Yu Liu & Shangguang Jiang & Yazhou Luo & Nianzhang Liu & Deping Ke, 2022. "A Method of Probability Distribution Modeling of Multi-Dimensional Conditions for Wind Power Forecast Error Based on MNSGA-II-Kmeans," Energies, MDPI, vol. 15(7), pages 1-21, March.
    5. Landini, S. & O’Donovan, T.S., 2021. "Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions," Energy, Elsevier, vol. 214(C).
    6. Guangwei Chen & Zhitao Liu & Hongye Su, 2020. "An Optimal Fast-Charging Strategy for Lithium-Ion Batteries via an Electrochemical–Thermal Model with Intercalation-Induced Stresses and Film Growth," Energies, MDPI, vol. 13(9), pages 1-16, May.
    7. Basit Ali & Muhammad Waseem Ashraf & Shahzadi Tayyaba, 2019. "Simulation, Fuzzy Analysis and Development of ZnO Nanostructure-based Piezoelectric MEMS Energy Harvester," Energies, MDPI, vol. 12(5), pages 1-15, February.
    8. Omer Faruk Goksu & Ahmet Yigit Arabul & Revna Acar Vural, 2020. "Low Voltage Battery Management System with Internal Adaptive Charger and Fuzzy Logic Controller," Energies, MDPI, vol. 13(9), pages 1-15, May.
    9. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.
    10. Ran Li & Xue Wei & Hui Sun & Hao Sun & Xiaoyu Zhang, 2022. "Fast Charging Optimization for Lithium-Ion Batteries Based on Improved Electro-Thermal Coupling Model," Energies, MDPI, vol. 15(19), pages 1-19, September.
    11. Muhammad Umair Ali & Muhammad Ahmad Kamran & Pandiyan Sathish Kumar & Himanshu & Sarvar Hussain Nengroo & Muhammad Adil Khan & Altaf Hussain & Hee-Je Kim, 2018. "An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method," Energies, MDPI, vol. 11(11), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1325-:d:148553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.