IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1196-d145293.html
   My bibliography  Save this article

Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

Author

Listed:
  • Yuwei Li

    (Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
    Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA)

  • Dan Jia

    (Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Wei Li

    (Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Kunpeng Zhang

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China)

Abstract

Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF) at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

Suggested Citation

  • Yuwei Li & Dan Jia & Wei Li & Kunpeng Zhang, 2018. "Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology," Energies, MDPI, vol. 11(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1196-:d:145293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Cheng & Zhaolong Ge & Binwei Xia & Qian Li & Jiren Tang & Yugang Cheng & Shaojie Zuo, 2018. "Research on Hydraulic Technology for Seam Permeability Enhancement in Underground Coal Mines in China," Energies, MDPI, vol. 11(2), pages 1-19, February.
    2. Zhaohui Chong & Xuehua Li & Xiangyu Chen & Ji Zhang & Jingzheng Lu, 2017. "Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation," Energies, MDPI, vol. 10(7), pages 1-33, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ningbo Zhang & Changyou Liu & Baobao Chen, 2018. "A Case Study of Presplitting Blasting Parameters of Hard and Massive Roof Based on the Interaction between Support and Overlying Strata," Energies, MDPI, vol. 11(6), pages 1-14, May.
    2. Ali Shafiei & Maurice B. Dusseault & Ehsan Kosari & Morteza N. Taleghani, 2018. "Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach," Energies, MDPI, vol. 11(2), pages 1-26, February.
    3. Long Ren & Wendong Wang & Yuliang Su & Mingqiang Chen & Cheng Jing & Nan Zhang & Yanlong He & Jian Sun, 2018. "Multiporosity and Multiscale Flow Characteristics of a Stimulated Reservoir Volume (SRV)-Fractured Horizontal Well in a Tight Oil Reservoir," Energies, MDPI, vol. 11(10), pages 1-14, October.
    4. Liang Cheng & Zhaolong Ge & Jiufu Chen & Hao Ding & Lishuang Zou & Ke Li, 2018. "A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions," Energies, MDPI, vol. 11(11), pages 1-16, November.
    5. Xuelei Feng & Fengshan Ma & Haijun Zhao & Gang Liu & Jie Guo, 2019. "Gas Multiple Flow Mechanisms and Apparent Permeability Evaluation in Shale Reservoirs," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    6. Xiangxiang Zhang & Jianguo Wang & Feng Gao & Xiaolin Wang, 2018. "Numerical Study of Fracture Network Evolution during Nitrogen Fracturing Processes in Shale Reservoirs," Energies, MDPI, vol. 11(10), pages 1-22, September.
    7. Yanbao Liu & Zhigang Zhang & Wei Xiong & Kai Shen & Quanbin Ba, 2020. "The Influence of the Injected Water on the Underground Coalbed Methane Extraction," Energies, MDPI, vol. 13(5), pages 1-16, March.
    8. Wendong Wang & Yuliang Su & Bin Yuan & Kai Wang & Xiaopeng Cao, 2018. "Numerical Simulation of Fluid Flow through Fractal-Based Discrete Fractured Network," Energies, MDPI, vol. 11(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1196-:d:145293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.