IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p881-d140384.html
   My bibliography  Save this article

An Improved SPWM-Based Control with Over-Modulation Strategy of the Third Harmonic Elimination for a Single-Phase Inverter

Author

Listed:
  • Alenka Hren

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
    These authors contributed equally to this work.)

  • Franc Mihalič

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
    These authors contributed equally to this work.)

Abstract

In single-phase inverter systems (grid-connected, Uninterrupted Power Supply systems or motor drives), the high quality Total Harmonic Distortion (THD) factor must always be considered, along with the utilization rate of the DC link. In cases when the supplying DC voltage is reduced, the output voltage can still be assured constant in a limited range by using over-modulation. Unfortunately, this operation incurs fundamental frequency related higher order harmonics’ force (especially the third is dominant) into the inverter output voltage, which is a huge drawback in almost all applications. This paper provides a comprehensive spectrum analysis of three-level output voltage in a single-phase inverter working in over-modulation regime. The output voltage is generated by triangular Sinusoidal Pulse-Width Modulation (SPWM) and, based on the analytical results of a frequency spectrum evaluation, the opposite third harmonic component in the modulator unit forces this component in the output voltage close to zero. Other remaining higher harmonics can be attenuated more easily by using a smaller filter. Although the voltage gain of the fundamental harmonic component is lower at higher over-modulation, such a solution assures lower THD in the wide inverter’s working range. The proposed SPWM procedure was validated experimentally.

Suggested Citation

  • Alenka Hren & Franc Mihalič, 2018. "An Improved SPWM-Based Control with Over-Modulation Strategy of the Third Harmonic Elimination for a Single-Phase Inverter," Energies, MDPI, vol. 11(4), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:881-:d:140384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Al-Hitmi & Salman Ahmad & Atif Iqbal & Sanjeevikumar Padmanaban & Imtiaz Ashraf, 2018. "Selective Harmonic Elimination in a Wide Modulation Range Using Modified Newton–Raphson and Pattern Generation Methods for a Multilevel Inverter," Energies, MDPI, vol. 11(2), pages 1-16, February.
    2. Jana, Joydip & Saha, Hiranmay & Das Bhattacharya, Konika, 2017. "A review of inverter topologies for single-phase grid-connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1256-1270.
    3. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    4. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Nie & Yue Wang & Wanjun Lei & Tian Li & Shiyuan Yin, 2018. "Modeling and Enhanced Error-Free Current Control Strategy for Inverter with Virtual Resistor Damping," Energies, MDPI, vol. 11(10), pages 1-15, September.
    2. Min-Sup Song & In-Ho Cho & Jae-Bum Lee, 2020. "± 180° Discontinuous PWM for Single-Phase PWM Converter of High-Speed Railway Propulsion System," Energies, MDPI, vol. 13(7), pages 1-16, March.
    3. Marcolino Díaz-Araujo & Aurelio Medina & Rafael Cisneros-Magaña & Amner Ramírez, 2018. "Periodic Steady State Assessment of Microgrids with Photovoltaic Generation Using Limit Cycle Extrapolation and Cubic Splines," Energies, MDPI, vol. 11(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    2. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    3. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    4. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    5. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    6. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    7. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    8. Geng, Zhiqiang & Li, Yanan & Han, Yongming & Zhu, Qunxiong, 2018. "A novel self-organizing cosine similarity learning network: An application to production prediction of petrochemical systems," Energy, Elsevier, vol. 142(C), pages 400-410.
    9. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    10. Zhi Wu & Xiao Du & Wei Gu & Ping Ling & Jinsong Liu & Chen Fang, 2018. "Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks," Energies, MDPI, vol. 11(7), pages 1-19, July.
    11. Amirreza Naderipour & Zulkurnain Abdul-Malek & Mohammad Reza Miveh & Mohammad Jafar Hadidian Moghaddam & Akhtar Kalam & Foad. H. Gandoman, 2018. "A Harmonic Compensation Strategy in a Grid-Connected Photovoltaic System Using Zero-Sequence Control," Energies, MDPI, vol. 11(10), pages 1-18, October.
    12. Qian Liu & Rui Wang & Yan Zhang & Guohua Wu & Jianmai Shi, 2018. "An Optimal and Distributed Demand Response Strategy for Energy Internet Management," Energies, MDPI, vol. 11(1), pages 1-16, January.
    13. Pouria Sheikhahmadi & Ramyar Mafakheri & Salah Bahramara & Maziar Yazdani Damavandi & João P. S. Catalão, 2018. "Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs," Energies, MDPI, vol. 11(3), pages 1-17, March.
    14. Athila Quaresma Santos & Zheng Ma & Casper Gellert Olsen & Bo Nørregaard Jørgensen, 2018. "Framework for Microgrid Design Using Social, Economic, and Technical Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
    15. Mohamed A. Hassan & Muhammed Y. Worku & Abdelfattah A. Eladl & Mohammed A. Abido, 2021. "Dynamic Stability Performance of Autonomous Microgrid Involving High Penetration Level of Constant Power Loads," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    16. Majid Mehrasa & Edris Pouresmaeil & Bahram Pournazarian & Amir Sepehr & Mousa Marzband & João P. S. Catalão, 2018. "Synchronous Resonant Control Technique to Address Power Grid Instability Problems Due to High Renewables Penetration," Energies, MDPI, vol. 11(9), pages 1-18, September.
    17. Mamun, A. & Sivasubramaniam, A. & Fathy, H.K., 2018. "Collective learning of lithium-ion aging model parameters for battery health-conscious demand response in datacenters," Energy, Elsevier, vol. 154(C), pages 80-95.
    18. Ghasemi, Ahmad, 2018. "Coordination of pumped-storage unit and irrigation system with intermittent wind generation for intelligent energy management of an agricultural microgrid," Energy, Elsevier, vol. 142(C), pages 1-13.
    19. Reza Sirjani, 2017. "Optimal Capacitor Placement in Wind Farms by Considering Harmonics Using Discrete Lightning Search Algorithm," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    20. Mohamed A. Tolba & Hegazy Rezk & Vladimir Tulsky & Ahmed A. Zaki Diab & Almoataz Y. Abdelaziz & Artem Vanin, 2018. "Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms," Energies, MDPI, vol. 11(1), pages 1-33, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:881-:d:140384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.