IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p845-d139599.html
   My bibliography  Save this article

Impedance Modelling and Parametric Sensitivity of a VSC-HVDC System: New Insights on Resonances and Interactions

Author

Listed:
  • Adedotun J. Agbemuko

    (Electrical Power Systems Area, Catalonia Institute for Energy Research, 08930 Barcelona, Spain)

  • José Luis Domínguez-García

    (Electrical Power Systems Area, Catalonia Institute for Energy Research, 08930 Barcelona, Spain)

  • Eduardo Prieto-Araujo

    (CITCEA-UPC, Department of Electrical Engineering, Polytechnic University of Catalonia (UPC), 08028 Barcelona, Spain)

  • Oriol Gomis-Bellmunt

    (CITCEA-UPC, Department of Electrical Engineering, Polytechnic University of Catalonia (UPC), 08028 Barcelona, Spain)

Abstract

Pervasiveness of power converters in the electric power system is expected in the future. Such large penetration will change the current power system dynamics leading to uncertain, unexpected, and potentially critical responses. This paper investigates the stability and resonance of a VSC-HVDC (Voltage Source Converter High Voltage Direct Current) link within an AC grid, whilst providing insights into resonances having a role on the grid. This is studied through the impedance-based modelling of the entire system (AC and DC grids), including controls of converters. Additionally, the impact of the different parameters of the hybrid AC-DC power system such as control systems and grid components on the system dynamics and stability is investigated. From this study, the impact of the system components and the controls of the converter on overall resonance response and stability is shown, including potential undesired sub-synchronous and harmonic resonances due to AC-DC system interactions. The analytical impedance-based models developed and obtained is validated through time-domain simulations, the physical model of the whole system is built in Simscape ™ Power Systems ™ and control systems in MATLAB/Simulink ® (R2017b). This has demonstrated the validity of the model to deal with and detect such dynamics.

Suggested Citation

  • Adedotun J. Agbemuko & José Luis Domínguez-García & Eduardo Prieto-Araujo & Oriol Gomis-Bellmunt, 2018. "Impedance Modelling and Parametric Sensitivity of a VSC-HVDC System: New Insights on Resonances and Interactions," Energies, MDPI, vol. 11(4), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:845-:d:139599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youngho Cho & Kyeon Hur & Yong Cheol Kang & Eduard Muljadi, 2017. "Impedance-Based Stability Analysis in Grid Interconnection Impact Study Owing to the Increased Adoption of Converter-Interfaced Generators," Energies, MDPI, vol. 10(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaqiong Li & Zhanfeng Deng & Tongxun Wang & Guoliang Zhao & Shengjun Zhou, 2018. "Coupled Harmonic Admittance Identification Based on Least Square Estimation," Energies, MDPI, vol. 11(10), pages 1-15, September.
    2. Gonzalo Abad & Aitor Laka & Gabriel Saavedra & Jon Andoni Barrena, 2018. "Analytical Modeling Approach to Study Harmonic Mitigation in AC Grids with Active Impedance at Selective Frequencies," Energies, MDPI, vol. 11(6), pages 1-31, May.
    3. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    4. Teuvo Suntio & Tuomas Messo & Matias Berg & Henrik Alenius & Tommi Reinikka & Roni Luhtala & Kai Zenger, 2019. "Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications," Energies, MDPI, vol. 12(3), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz Khan & Xiaobin Zhang & Bakht Muhammad Khan & Husan Ali & Haider Zaman & Muhammad Saad, 2018. "AC and DC Impedance Extraction for 3-Phase and 9-Phase Diode Rectifiers Utilizing Improved Average Mathematical Models," Energies, MDPI, vol. 11(3), pages 1-19, March.
    2. Xiang Wang & Zhengyou He & Jianwei Yang, 2018. "Electric Vehicle Fast-Charging Station Unified Modeling and Stability Analysis in the dq Frame," Energies, MDPI, vol. 11(5), pages 1-24, May.
    3. Xing Li & Hua Lin, 2018. "Stability Analysis of Grid-Connected Converters with Different Implementations of Adaptive PR Controllers under Weak Grid Conditions," Energies, MDPI, vol. 11(8), pages 1-17, August.
    4. Teuvo Suntio & Tuomas Messo & Matias Berg & Henrik Alenius & Tommi Reinikka & Roni Luhtala & Kai Zenger, 2019. "Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications," Energies, MDPI, vol. 12(3), pages 1-31, January.
    5. Ishita Ray, 2021. "Review of Impedance-Based Analysis Methods Applied to Grid-Forming Inverters in Inverter-Dominated Grids," Energies, MDPI, vol. 14(9), pages 1-18, May.
    6. Wu Cao & Kangli Liu & Shunyu Wang & Haotian Kang & Dongchen Fan & Jianfeng Zhao, 2019. "Harmonic Stability Analysis for Multi-Parallel Inverter-Based Grid-Connected Renewable Power System Using Global Admittance," Energies, MDPI, vol. 12(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:845-:d:139599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.