IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p523-d133942.html
   My bibliography  Save this article

Electronic Properties of Typical Molecules and the Discharge Mechanism of Vegetable and Mineral Insulating Oils

Author

Listed:
  • Yachao Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Feipeng Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Jian Li

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Suning Liang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Jinghan Zhou

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

Abstract

Vegetable insulating oil may replace the mineral insulating oil used in large power transformers due to its extraordinary biodegradability and fire resistance. According to component analysis, 1-methylnaphthalene and eicosane are considered the typical molecules in mineral oil. Triolein and tristearin are considered the typical molecules in vegetable oil. The ionization potential (IP) and the variation of highest occupied molecular orbital (HOMO) of typical molecules under an external electric field are calculated using quantum chemistry methods. The calculation results show that the IP of the triolein molecule is comparable to that of the 1-methylnaphthalene molecule. The mechanisms of losing electrons are discussed, based on the analysis of HOMO composition. The insulation characteristics of the triolein and tristearin are more likely to be degraded under an external electric field than those of 1-methylnaphthalene and eicosane. Due to the fact that the number density of low IP molecules groups in vegetable oil is much greater than that in mineral oil, the polarity effect in vegetable oil is more obvious than that in mineral oil. This eventually leads to different streamer characteristics in vegetable oil and mineral oil under positive polarity and negative polarity.

Suggested Citation

  • Yachao Wang & Feipeng Wang & Jian Li & Suning Liang & Jinghan Zhou, 2018. "Electronic Properties of Typical Molecules and the Discharge Mechanism of Vegetable and Mineral Insulating Oils," Energies, MDPI, vol. 11(3), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:523-:d:133942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chenmeng Xiang & Quan Zhou & Jian Li & Qingdan Huang & Haoyong Song & Zhaotao Zhang, 2016. "Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults," Energies, MDPI, vol. 9(5), pages 1-22, April.
    2. Yachao Wang & Feipeng Wang & Jian Li & Zhengyong Huang & Suning Liang & Jinghan Zhou, 2017. "Molecular Structure and Electronic Properties of Triolein Molecule under an External Electric Field Related to Streamer Initiation and Propagation," Energies, MDPI, vol. 10(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Issouf Fofana & U. Mohan Rao, 2018. "Engineering Dielectric Liquid Applications," Energies, MDPI, vol. 11(10), pages 1-4, October.
    2. Jun Wu & Junhui Zhang, 2020. "Research and Development of Natural Vegetable Insulating Oil Based on Jatropha curcas Seed Oil," Energies, MDPI, vol. 13(17), pages 1-12, August.
    3. Miloš Šárpataky & Juraj Kurimský & Michal Rajňák & Michal Krbal & Marek Adamčák, 2022. "Dielectric Performance of Natural- and Synthetic-Ester-Based Nanofluids with Fullerene Nanoparticles," Energies, MDPI, vol. 16(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    2. Luc Loiselle & U. Mohan Rao & Issouf Fofana, 2020. "Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions," Energies, MDPI, vol. 13(13), pages 1-15, July.
    3. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    4. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    6. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    7. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.
    8. Mardhiah Hayati Abdul Hamid & Mohd Taufiq Ishak & Nur Sabrina Suhaimi & Jaafar Adnan & Nazrul Fariq Makmor & Nurul Izzatul Akma Katim & Rahisham Abd Rahman, 2021. "Lightning Impulse Breakdown Voltage of Rice Bran Oil for Transformer Application," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:523-:d:133942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.