IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p418-d131412.html
   My bibliography  Save this article

Prediction of Thermal Environment in a Large Space Using Artificial Neural Network

Author

Listed:
  • Hyun-Jung Yoon

    (Department of Architectural Engineering, Inha University, Incheon 22212, Korea)

  • Dong-Seok Lee

    (Department of Architectural Engineering, Inha University, Incheon 22212, Korea)

  • Hyun Cho

    (Research & Engineering Division, R&D Center, Posco E&C, Incheon 21985, Korea)

  • Jae-Hun Jo

    (Department of Architectural Engineering, Inha University, Incheon 22212, Korea
    Center for Korean Studies, University of California, Berkeley, CA 94704, USA)

Abstract

Since the thermal environment of large space buildings such as stadiums can vary depending on the location of the stands, it is important to divide them into different zones and evaluate their thermal environment separately. The thermal environment can be evaluated using physical values measured with the sensors, but the occupant density of the stadium stands is high, which limits the locations available to install the sensors. As a method to resolve the limitations of installing the sensors, we propose a method to predict the thermal environment of each zone in a large space. We set six key thermal factors affecting the thermal environment in a large space to be predicted factors (indoor air temperature, mean radiant temperature, and clothing) and the fixed factors (air velocity, metabolic rate, and relative humidity). Using artificial neural network (ANN) models and the outdoor air temperature and the surface temperature of the interior walls around the stands as input data, we developed a method to predict the three thermal factors. Learning and verification datasets were established using STAR CCM+ (2016.10, Siemens PLM software, Plano, TX, USA). An analysis of each model’s prediction results showed that the prediction accuracy increased with the number of learning data points. The thermal environment evaluation process developed in this study can be used to control heating, ventilation, and air conditioning (HVAC) facilities in each zone in a large space building with sufficient learning by ANN models at the building testing or the evaluation stage.

Suggested Citation

  • Hyun-Jung Yoon & Dong-Seok Lee & Hyun Cho & Jae-Hun Jo, 2018. "Prediction of Thermal Environment in a Large Space Using Artificial Neural Network," Energies, MDPI, vol. 11(2), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:418-:d:131412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Altan Dombaycı, Ömer & Gölcü, Mustafa, 2009. "Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1158-1161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Elnour, Mariam & Himeur, Yassine & Fadli, Fodil & Mohammedsherif, Hamdi & Meskin, Nader & Ahmad, Ahmad M. & Petri, Ioan & Rezgui, Yacine & Hodorog, Andrei, 2022. "Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities," Applied Energy, Elsevier, vol. 318(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    3. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    4. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    5. Robert Jane & Gordon Parker & Gail Vaucher & Morris Berman, 2020. "Characterizing Meteorological Forecast Impact on Microgrid Optimization Performance and Design," Energies, MDPI, vol. 13(3), pages 1-23, January.
    6. Paniagua-Tineo, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Ortiz-García, E.G. & Cony, M.A. & Hernández-Martín, E., 2011. "Prediction of daily maximum temperature using a support vector regression algorithm," Renewable Energy, Elsevier, vol. 36(11), pages 3054-3060.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:418-:d:131412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.