IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p351-d130028.html
   My bibliography  Save this article

Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma

Author

Listed:
  • Wei Huang

    (Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

  • Junkui Jin

    (Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

  • Guangdong Wen

    (Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

  • Qiwei Yang

    (Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

  • Baogen Su

    (Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

  • Qilong Ren

    (Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

It is important to convert alkane-rich gases, such as coke oven gas, to value-added chemicals rather than direct emission or combustion. Abundant nitrogen/oxygen substances are present in the actual alkane-rich gases. However, the research about how they influence the conversion in the pyrolysis process is missing. In this work, a systematic investigation on the effect of various nitrogen/oxygen-containing substances, including N 2 , CO, and CO 2 ,on the pyrolysis of CH 4 to C 2 H 2 was performed by a self-made 50 kW rotating arc thermal plasma reactor, and the pyrolysis of a simulated coke oven gas as a model of alkane-rich mixing gas was conducted as well. It was found that the presence of N 2 and CO 2 was not conducive to the main reaction of alkane pyrolysis for C 2 H 2 , while CO, as a stable equilibrium product, had little effect on the cracking reaction. Consequently, it is suggested that a pretreatment process of removing N 2 and CO 2 should be present before pyrolysis. Both input power and feed rate had considerable effect on the pyrolysis of the simulated coke oven gas, and a C 2 H 2 selectivity of 91.2% and a yield of 68.3% could be obtained at an input power of 17.9 kW.

Suggested Citation

  • Wei Huang & Junkui Jin & Guangdong Wen & Qiwei Yang & Baogen Su & Qilong Ren, 2018. "Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma," Energies, MDPI, vol. 11(2), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:351-:d:130028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Zhang & Jie Ma & Baogen Su & Guangdong Wen & Qiwei Yang & Qilong Ren, 2017. "Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene," Energies, MDPI, vol. 10(4), pages 1-13, April.
    2. Jie Ma & Ming Zhang & Jianhua Wu & Qiwei Yang & Guangdong Wen & Baogen Su & Qilong Ren, 2017. "Hydropyrolysis of n- Hexane and Toluene to Acetylene in Rotating-Arc Plasma," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Anton Igorevich Serov & Yuriy Alekseevich Kurskii & Dmitry Yurievich Titov & Evgenia Ruslanovna Bodrikova, 2022. "Liquid-Phase Non-Thermal Plasma Discharge for Fuel Oil Processing," Energies, MDPI, vol. 15(9), pages 1-9, May.
    2. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Alexander Leonidovich Vasiliev & Yuriy Alekseevich Kurskii & Anna Gennadievna Ivanova & Andrey Leonidovich Golovin & Dmitry Alekseevich Shirokov & D, 2023. "Non-Thermal Plasma Pyrolysis of Fuel Oil in the Liquid Phase," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Anton Igorevich Serov & Yuriy Alekseevich Kurskii & Dmitry Yurievich Titov & Evgenia Ruslanovna Bodrikova, 2022. "Liquid-Phase Non-Thermal Plasma Discharge for Fuel Oil Processing," Energies, MDPI, vol. 15(9), pages 1-9, May.
    2. Dong Kyoo Park & Ji-Hyeon Kim & Hyo-Sik Kim & Jin-Ho Kim & Jae-Hong Ryu, 2023. "Possibility Study in CO 2 Free Hydrogen Production Using Dodecane (C 12 H 26 ) from Plasma Reaction," Energies, MDPI, vol. 16(4), pages 1-13, February.
    3. Jie Ma & Ming Zhang & Jianhua Wu & Qiwei Yang & Guangdong Wen & Baogen Su & Qilong Ren, 2017. "Hydropyrolysis of n- Hexane and Toluene to Acetylene in Rotating-Arc Plasma," Energies, MDPI, vol. 10(7), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:351-:d:130028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.