IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p310-d129755.html
   My bibliography  Save this article

Direct Probabilistic Load Flow in Radial Distribution Systems Including Wind Farms: An Approach Based on Data Clustering

Author

Listed:
  • Arman Oshnoei

    (Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran)

  • Rahmat Khezri

    (Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, Kurdistan 6617715177, Iran)

  • Mehrdad Tarafdar Hagh

    (Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran)

  • Kuaanan Techato

    (Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand)

  • SM Muyeen

    (Department of Electrical and Computer Engineering, Curtin University, Perth, WA 6845, Australia)

  • Omid Sadeghian

    (Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran)

Abstract

The ongoing study aims to establish a direct probabilistic load flow (PLF) for the analysis of wind integrated radial distribution systems. Because of the stochastic output power of wind farms, it is very important to find a method which can reduce the calculation burden significantly, without having compromising the accuracy of results. In the proposed approach, a K-means based data clustering algorithm is employed, in which all data points are bunched into desired clusters. In this regard, probable agents are selected to run the PLF algorithm. The clustered data are used to employ the Monte Carlo simulation (MCS) method. In this paper, the analysis is performed in terms of simulation run-time. Also, this research follows a two-fold aim. In the first stage, the superiority of data clustering-based MCS over the unsorted data MCS is demonstrated properly. Moreover, the impact of data clustering-based MCS and unsorted data-based MCS is investigated using an indirect probabilistic forward/backward sweep (PFBS) method. Thus, in the second stage, the simulation run-time comparison is carried out rigorously between the proposed direct PLF and the indirect PFBS method to examine the computational burden effects. Simulation results are exhibited on the IEEE 33-bus and 69-bus radial distribution systems.

Suggested Citation

  • Arman Oshnoei & Rahmat Khezri & Mehrdad Tarafdar Hagh & Kuaanan Techato & SM Muyeen & Omid Sadeghian, 2018. "Direct Probabilistic Load Flow in Radial Distribution Systems Including Wind Farms: An Approach Based on Data Clustering," Energies, MDPI, vol. 11(2), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:310-:d:129755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasiliki Vita, 2017. "Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks," Energies, MDPI, vol. 10(9), pages 1-13, September.
    2. Ahmed Al Ameri & Aouchenni Ounissa & Cristian Nichita & Aouzellag Djamal, 2017. "Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution," Energies, MDPI, vol. 10(4), pages 1-16, April.
    3. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Ky Huynh & Van Duong Ngo & Dinh Duong Le & Nhi Thi Ai Nguyen, 2018. "Probabilistic Power Flow Methodology for Large-Scale Power Systems Incorporating Renewable Energy Sources," Energies, MDPI, vol. 11(10), pages 1-12, October.
    2. Zain Anwer Memon & Riccardo Trinchero & Yanzhao Xie & Flavio G. Canavero & Igor S. Stievano, 2020. "An Iterative Scheme for the Power-Flow Analysis of Distribution Networks based on Decoupled Circuit Equivalents in the Phasor Domain," Energies, MDPI, vol. 13(2), pages 1-16, January.
    3. Nikolaos Koutsoukis & Pavlos Georgilakis, 2019. "A Chance-Constrained Multistage Planning Method for Active Distribution Networks," Energies, MDPI, vol. 12(21), pages 1-19, October.
    4. Ziqiang Zhou & Fei Tang & Dichen Liu & Chenxu Wang & Xin Gao, 2020. "Probabilistic Assessment of Distribution Network with High Penetration of Distributed Generators," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    5. Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
    6. Ayşe Aybike Şeker & Tuba Gözel & Mehmet Hakan Hocaoğlu, 2021. "BIBC Matrix Modification for Network Topology Changes: Reconfiguration Problem Implementation," Energies, MDPI, vol. 14(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Tu & Zhongdong Yin & Yonghai Xu, 2018. "Study on the Evaluation Index System and Evaluation Method of Voltage Stability of Distribution Network with High DG Penetration," Energies, MDPI, vol. 11(1), pages 1-15, January.
    2. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    3. Paulo M. De Oliveira-De Jesus & Mario A. Rios & Gustavo A. Ramos, 2018. "Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration," Energies, MDPI, vol. 11(8), pages 1-19, July.
    4. Yi, Tao & Cheng, Xiaobin & Chen, Yaxuan & Liu, Jinpeng, 2020. "Joint optimization of charging station and energy storage economic capacity based on the effect of alternative energy storage of electric vehicle," Energy, Elsevier, vol. 208(C).
    5. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    6. Varadharajan Sankaralingam Sriraja Balaguru & Nesamony Jothi Swaroopan & Kannadasan Raju & Mohammed H. Alsharif & Mun-Kyeom Kim, 2021. "Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors," Sustainability, MDPI, vol. 13(4), pages 1-31, February.
    7. Christian Thiel & Andreea Julea & Beatriz Acosta Iborra & Nerea De Miguel Echevarria & Emanuela Peduzzi & Enrico Pisoni & Jonatan J. Gómez Vilchez & Jette Krause, 2019. "Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union," Energies, MDPI, vol. 12(12), pages 1-23, June.
    8. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    9. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    10. Seyed Morteza Alizadeh & Sakineh Sadeghipour & Cagil Ozansoy & Akhtar Kalam, 2020. "Developing a Mathematical Model for Wind Power Plant Siting and Sizing in Distribution Networks," Energies, MDPI, vol. 13(13), pages 1-34, July.
    11. Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
    12. Yadav, Monika & Pal, Nitai & Saini, Devender Kumar, 2021. "Resilient electrical distribution grid planning against seismic waves using distributed energy resources and sectionalizers: An Indian's urban grid case study," Renewable Energy, Elsevier, vol. 178(C), pages 241-259.
    13. Smarajit Ghosh & Vinod Karar, 2018. "Assimilation of Optimal Sized Hybrid Photovoltaic-Biomass System by Dragonfly Algorithm with Grid," Energies, MDPI, vol. 11(7), pages 1-19, July.
    14. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    15. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory," Energies, MDPI, vol. 11(7), pages 1-24, July.
    16. Bitencourt, Leonardo & Dias, Bruno & Soares, Tiago & Borba, Bruno & Quirós-Tortós, Jairo, 2023. "e-Carsharing siting and sizing DLMP-based under demand uncertainty," Applied Energy, Elsevier, vol. 330(PB).
    17. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    18. Kashif Sohail & Hooman Farzaneh, 2022. "Model for Optimal Power Coefficient Tracking and Loss Reduction of the Wind Turbine Systems," Energies, MDPI, vol. 15(11), pages 1-19, June.
    19. Syed Ali Abbas Kazmi & Abdul Kashif Janjua & Dong Ryeol Shin, 2018. "Enhanced Voltage Stability Assessment Index Based Planning Approach for Mesh Distribution Systems," Energies, MDPI, vol. 11(5), pages 1-36, May.
    20. Navdeep Kaur & Sanjay Kumar Jain, 2017. "Multi-Objective Optimization Approach for Placement of Multiple DGs for Voltage Sensitive Loads," Energies, MDPI, vol. 10(11), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:310-:d:129755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.