IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p91-d125004.html
   My bibliography  Save this article

An Improved Grey Model and Scenario Analysis for Carbon Intensity Forecasting in the Pearl River Delta Region of China

Author

Listed:
  • Fei Ye

    (School of Business Administration, South China University of Technology, 510640 Guangzhou, China)

  • Xinxiu Xie

    (School of Business Administration, South China University of Technology, 510640 Guangzhou, China)

  • Li Zhang

    (School of Business Administration, South China University of Technology, 510640 Guangzhou, China)

  • Xiaoling Hu

    (Guangdong Food and Drug Vocational College, Guangzhou, China)

Abstract

In this paper, an improved grey model and scenario analysis, GA-GM(1,N) is proposed to forecast the carbon intensity in the Pearl River Delta (PRD) region, one of the most developed regions in China. Moreover, to show the advantage and feasibility of the proposed model, the forecasting results of the GA-GM(1,N) model are compared with that of a single-variable grey model (GM (1,1)) and a multivariable form (GM(1,N)). Data from one sample period (2005–2012) are used to develop the models, and data from another sample period (2013–2015) are used to test them. The mean absolute percentage error (MAPE) is applied to measure the accuracy of prediction. The results show that, of the three models, GA-GM(1,N) produces the best carbon intensity forecasts, with MAPEs of 0.4–1.4% and 0.04–0.4% in the development and testing periods respectively. This indicates that the optimization of the genetic algorithm is effective. The realization of carbon reduction targets in different cities is also explored by combining grey models with scenario analysis. Only Guangzhou could achieve its reduction target under all scenarios, and it can serve as a reference for other cities. Policy recommendations are provided based on these results.

Suggested Citation

  • Fei Ye & Xinxiu Xie & Li Zhang & Xiaoling Hu, 2018. "An Improved Grey Model and Scenario Analysis for Carbon Intensity Forecasting in the Pearl River Delta Region of China," Energies, MDPI, vol. 11(1), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:91-:d:125004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/91/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/91/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, John & Yan, Ruiliang & Hollister, Kimberly & Zhu, Dan, 2008. "A historic review of management science research in China," Omega, Elsevier, vol. 36(6), pages 919-932, December.
    2. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    3. Zhu, Bangzhu & Wang, Kefan & Chevallier, Julien & Wang, Ping & Wei, Yi-Ming, 2015. "Can China achieve its carbon intensity target by 2020 while sustaining economic growth?," Ecological Economics, Elsevier, vol. 119(C), pages 209-216.
    4. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    5. Zhang, Kaiqi & Du, Haifeng & Feldman, Marcus W., 2017. "Maximizing influence in a social network: Improved results using a genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 20-30.
    6. Kadier, Abudukeremu & Abdeshahian, Peyman & Simayi, Yibadatihan & Ismail, Manal & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2015. "Grey relational analysis for comparative assessment of different cathode materials in microbial electrolysis cells," Energy, Elsevier, vol. 90(P2), pages 1556-1562.
    7. Wang, Zhaohua & Zhang, Bin & Liu, Tongfan, 2016. "Empirical analysis on the factors influencing national and regional carbon intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 34-42.
    8. Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
    9. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    10. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    11. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    12. Bhattacharyya, Subhes C. & Ussanarassamee, Arjaree, 2004. "Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000," Energy Economics, Elsevier, vol. 26(5), pages 765-781, September.
    13. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.
    14. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
    15. Wang, Run & Liu, Wenjuan & Xiao, Lishan & Liu, Jian & Kao, William, 2011. "Path towards achieving of China's 2020 carbon emission reduction target--A discussion of low-carbon energy policies at province level," Energy Policy, Elsevier, vol. 39(5), pages 2740-2747, May.
    16. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    17. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Jinyan & Wang, Chao & Wang, Huihui & Zhang, Fan & Li, Zhihui, 2024. "Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    3. Ying Wang & Peipei Shang & Lichun He & Yingchun Zhang & Dandan Liu, 2018. "Can China Achieve the 2020 and 2030 Carbon Intensity Targets through Energy Structure Adjustment?," Energies, MDPI, vol. 11(10), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinying Li & Jianfeng Shi & Jinchao Li, 2016. "Exploring Reduction Potential of Carbon Intensity Based on Back Propagation Neural Network and Scenario Analysis: A Case of Beijing, China," Energies, MDPI, vol. 9(8), pages 1-17, August.
    2. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    3. Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Applied Energy, Elsevier, vol. 233, pages 196-207.
    4. Li, Guo-Dong & Masuda, Shiro & Nagai, Masatake, 2012. "An optimal hybrid model for atomic power generation prediction in Japan," Energy, Elsevier, vol. 45(1), pages 655-661.
    5. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    6. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    7. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    8. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    9. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    10. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    11. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    12. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    13. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    14. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    17. Chang, Che-Jung & Li, Der-Chiang & Huang, Yi-Hsiang & Chen, Chien-Chih, 2015. "A novel gray forecasting model based on the box plot for small manufacturing data sets," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 400-408.
    18. Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
    19. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    20. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:91-:d:125004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.