IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p131-d125590.html
   My bibliography  Save this article

Determination of In-Situ Stress and Geomechanical Properties from Borehole Deformation

Author

Listed:
  • Hong Xue Han

    (Department of Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA)

  • Shunde Yin

    (Department of Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA)

Abstract

This paper proposes a cost-effective technique to determine geomechanical properties and in-situ stress from borehole deformation data. In this approach, an artificial neural network (ANN) is applied to map the relationship among in-situ stress, borehole size, geomechanical properties, and borehole displacements. The genetic algorithm (GA) searches for the set of unknown stresses and geomechanical properties that matches the objective borehole deformation function. Probabilistic recapitulation (PR) analysis is conducted after each ANN-GA modeling cycle and will be repeated with a reduced number of unknowns for the next ANN-GA modeling cycle until unequivocal results are achieved. The PR-GA-ANN method has been demonstrated by a field case study to estimate borehole size, Young’s modulus, Poisson’s ratio, and the two horizontal stresses using borehole deformation information reported from four-arm caliper log of a vertical borehole. The methodology effectively solves the issue of the multiple solutions (various rock mechanical properties and in-situ stresses combinations) for a certain borehole deformation. The case study also indicated that the calculated horizontal stresses are in reasonable agreement with the filed hydraulic fracture treatment observations and the reported regional stress study of the area.

Suggested Citation

  • Hong Xue Han & Shunde Yin, 2018. "Determination of In-Situ Stress and Geomechanical Properties from Borehole Deformation," Energies, MDPI, vol. 11(1), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:131-:d:125590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yangsheng & Feng, Zijun & Xi, Baoping & Wan, Zhijun & Yang, Dong & Liang, Weiguo, 2015. "Deformation and instability failure of borehole at high temperature and high pressure in Hot Dry Rock exploitation," Renewable Energy, Elsevier, vol. 77(C), pages 159-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yutong Chai & Zhuoheng Chen & Shunde Yin, 2023. "A Preliminary Analysis of In-Situ Stress at Mount Meager by Displacement Discontinuity Method with Topography and Tectonics Considered," Energies, MDPI, vol. 16(3), pages 1-25, January.
    2. Guangchao Zhang & You Li & Xiangjun Meng & Guangzhe Tao & Lei Wang & Hanqing Guo & Chuanqi Zhu & Hao Zuo & Zhi Qu, 2022. "Distribution Law of In Situ Stress and Its Engineering Application in Rock Burst Control in Juye Mining Area," Energies, MDPI, vol. 15(4), pages 1-17, February.
    3. Przemyslaw Michal Wilczynski & Andrzej Domonik & Pawel Lukaszewski, 2021. "Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland," Energies, MDPI, vol. 14(11), pages 1-17, May.
    4. Hua Zhang & Shunde Yin & Bernt S. Aadnoy, 2019. "Numerical Investigation of the Impacts of Borehole Breakouts on Breakdown Pressure," Energies, MDPI, vol. 12(5), pages 1-23, March.
    5. Wei Meng & Chuan He, 2020. "Back Analysis of the Initial Geo-Stress Field of Rock Masses in High Geo-Temperature and High Geo-Stress," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    2. Yan-Jun Shen & Xin Hou & Jiang-Qiang Yuan & Chun-Hu Zhao, 2019. "Experimental Study on Temperature Change and Crack Expansion of High Temperature Granite under Different Cooling Shock Treatments," Energies, MDPI, vol. 12(11), pages 1-17, May.
    3. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    4. Tomac, Ingrid & Sauter, Martin, 2018. "A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3972-3980.
    5. Wang, Yijiang & Jiang, Jinyi & Darkwa, Jo & Xu, Zeyuan & Zheng, Xiaofeng & Zhou, Guoqing, 2020. "Experimental study of thermal fracturing of Hot Dry Rock irradiated by moving laser beam: Temperature, efficiency and porosity," Renewable Energy, Elsevier, vol. 160(C), pages 803-816.
    6. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    7. Mohamed Elgharib Gomah & Enyuan Wang & Ahmed A. Omar, 2024. "Experimental Investigation on the Damage Evolution of Thermally Treated Granodiorite Subjected to Rapid Cooling with Liquid Nitrogen," Sustainability, MDPI, vol. 16(15), pages 1-23, July.
    8. Peng Xiao & Jun Zheng & Bin Dou & Hong Tian & Guodong Cui & Muhammad Kashif, 2021. "Mechanical Behaviors of Granite after Thermal Shock with Different Cooling Rates," Energies, MDPI, vol. 14(13), pages 1-17, June.
    9. Shu, Biao & Zhu, Runjun & Zhang, Shaohe & Dick, Jeffrey, 2019. "A qualitative prediction method of new crack-initiation direction during hydraulic fracturing of pre-cracks based on hyperbolic failure envelope," Applied Energy, Elsevier, vol. 248(C), pages 185-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:131-:d:125590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.