IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v77y2015icp159-165.html
   My bibliography  Save this article

Deformation and instability failure of borehole at high temperature and high pressure in Hot Dry Rock exploitation

Author

Listed:
  • Zhao, Yangsheng
  • Feng, Zijun
  • Xi, Baoping
  • Wan, Zhijun
  • Yang, Dong
  • Liang, Weiguo

Abstract

Borehole stability at high temperature and high in-situ stresses is the key to Hot Dry Rock geothermal energy extraction. Upon drilling completion, borehole stability, its deformation and failure critical condition will be significant in deep HDR engineering design and construction. Using high temperature and high pressure servo-controlled triaxial rock testing machine, we performed experiments of borehole deformation and instability for three granite samples (200 mm in diameter and 400 mm long with a 40 mm opening in the center) at different hydrostatic stresses and temperature. The elastic and creep deformation data was analyzed. The results indicate that: 1) when the hydrostatic pressure is lower than 100 MPa and the temperature is below 400 °C, the specimens deform following the generalized Kelvin model. The critical condition for borehole stability is reached at hydrostatic pressure of 125 MPa and temperature of 500 °C, when creep deformation accelerates sharply. The failure mode is shear failure or a combination of shear and tension failure. The critical radial deformation ratio is about 20%; 2) Creep deformation at steady creep phase is derived based on the test data. The ultimate condition for drilling in granite is analyzed in regards to temperature and in-situ stresses.

Suggested Citation

  • Zhao, Yangsheng & Feng, Zijun & Xi, Baoping & Wan, Zhijun & Yang, Dong & Liang, Weiguo, 2015. "Deformation and instability failure of borehole at high temperature and high pressure in Hot Dry Rock exploitation," Renewable Energy, Elsevier, vol. 77(C), pages 159-165.
  • Handle: RePEc:eee:renene:v:77:y:2015:i:c:p:159-165
    DOI: 10.1016/j.renene.2014.11.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114008179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Xiao & Jun Zheng & Bin Dou & Hong Tian & Guodong Cui & Muhammad Kashif, 2021. "Mechanical Behaviors of Granite after Thermal Shock with Different Cooling Rates," Energies, MDPI, vol. 14(13), pages 1-17, June.
    2. Tomac, Ingrid & Sauter, Martin, 2018. "A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3972-3980.
    3. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    4. Wang, Yijiang & Jiang, Jinyi & Darkwa, Jo & Xu, Zeyuan & Zheng, Xiaofeng & Zhou, Guoqing, 2020. "Experimental study of thermal fracturing of Hot Dry Rock irradiated by moving laser beam: Temperature, efficiency and porosity," Renewable Energy, Elsevier, vol. 160(C), pages 803-816.
    5. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    6. Yan-Jun Shen & Xin Hou & Jiang-Qiang Yuan & Chun-Hu Zhao, 2019. "Experimental Study on Temperature Change and Crack Expansion of High Temperature Granite under Different Cooling Shock Treatments," Energies, MDPI, vol. 12(11), pages 1-17, May.
    7. Shu, Biao & Zhu, Runjun & Zhang, Shaohe & Dick, Jeffrey, 2019. "A qualitative prediction method of new crack-initiation direction during hydraulic fracturing of pre-cracks based on hyperbolic failure envelope," Applied Energy, Elsevier, vol. 248(C), pages 185-195.
    8. Hong Xue Han & Shunde Yin, 2018. "Determination of In-Situ Stress and Geomechanical Properties from Borehole Deformation," Energies, MDPI, vol. 11(1), pages 1-13, January.
    9. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    10. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    11. Mohamed Elgharib Gomah & Enyuan Wang & Ahmed A. Omar, 2024. "Experimental Investigation on the Damage Evolution of Thermally Treated Granodiorite Subjected to Rapid Cooling with Liquid Nitrogen," Sustainability, MDPI, vol. 16(15), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:77:y:2015:i:c:p:159-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.