IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3380-d187351.html
   My bibliography  Save this article

Computational Analysis of a Double-Nozzle Crossflow Hydroturbine

Author

Listed:
  • Ram Adhikari

    (Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
    Current address: Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
    The authors contributed equally to this work.)

  • David Wood

    (Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
    The authors contributed equally to this work.)

Abstract

The crossflow turbines commonly used in small hydropower systems have a single nozzle. We are unaware of any studies of double-nozzle crossflow turbines which could have twice the power output of the single-nozzle design by doubling the flow through the same runner, with a high maximum efficiency. We present a computational analysis of a double-nozzle crossflow turbine, to determine the turbine efficiency and fundamental flow patterns. This work was based on a single-nozzle crossflow turbine with a maximum efficiency of 88%,

Suggested Citation

  • Ram Adhikari & David Wood, 2018. "Computational Analysis of a Double-Nozzle Crossflow Hydroturbine," Energies, MDPI, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3380-:d:187351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ram Adhikari & David Wood, 2018. "The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension," Energies, MDPI, vol. 11(2), pages 1-18, January.
    2. Acharya, Nirmal & Kim, Chang-Gu & Thapa, Bhola & Lee, Young-Ho, 2015. "Numerical analysis and performance enhancement of a cross-flow hydro turbine," Renewable Energy, Elsevier, vol. 80(C), pages 819-826.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Xu & Tao Jiang & Chuan Wang & Dongtao Ji & Wei Shi & Bo Xu & Weigang Lu, 2022. "Experiment and Numerical Simulation on Hydraulic Loss and Flow Pattern of Low Hump Outlet Conduit with Different Inlet Water Rotation Speeds," Energies, MDPI, vol. 15(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weerakoon, A.H. Samitha & Kim, Byung-Ha & Cho, Young-Jin & Prasad, Deepak Divashkar & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2021. "Design optimization of a novel vertical augmentation channel housing a cross-flow turbine and performance evaluation as a wave energy converter," Renewable Energy, Elsevier, vol. 180(C), pages 1300-1314.
    2. Mehr, Goodarz & Durali, Mohammad & Khakrand, Mohammad Hadi & Hoghooghi, Hadi, 2021. "A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations," Renewable Energy, Elsevier, vol. 169(C), pages 1402-1421.
    3. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    4. Ram Adhikari & David Wood, 2018. "The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension," Energies, MDPI, vol. 11(2), pages 1-18, January.
    5. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    6. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    7. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    8. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    9. Yuquan Meng & Yuhang Yang & Haseung Chung & Pil-Ho Lee & Chenhui Shao, 2018. "Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    10. Jiyun, Du & Hongxing, Yang & Zhicheng, Shen & Xiaodong, Guo, 2018. "Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes," Renewable Energy, Elsevier, vol. 127(C), pages 386-397.
    11. Ifaei, Pouya & Farid, Alireza & Yoo, ChangKyoo, 2018. "An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data - Case study in Iran," Energy, Elsevier, vol. 158(C), pages 357-372.
    12. Piyawat Sritram & Ratchaphon Suntivarakorn, 2021. "The Efficiency Comparison of Hydro Turbines for Micro Power Plant from Free Vortex," Energies, MDPI, vol. 14(23), pages 1-13, November.
    13. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    14. Paweł Tomczyk & Krzysztof Mastalerek & Mirosław Wiatkowski & Alban Kuriqi & Jakub Jurasz, 2023. "Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant," Energies, MDPI, vol. 16(20), pages 1-19, October.
    15. Gao, Wei & Feng, Xiao, 2017. "The power target of a fluid machinery network in a circulating water system," Applied Energy, Elsevier, vol. 205(C), pages 847-854.
    16. Priyanka Majumder & Mrinmoy Majumder & Apu Kumar Saha & Soumitra Nath, 2020. "Selection of features for analysis of reliability of performance in hydropower plants: a multi-criteria decision making approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3239-3265, April.
    17. Nishi, Yasuyuki & Itoh, Natsumi & Fukutomi, Junichiro, 2022. "Performance and radial thrust of single-blade reverse running pump turbine," Renewable Energy, Elsevier, vol. 201(P1), pages 499-513.
    18. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3380-:d:187351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.