IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3358-d186896.html
   My bibliography  Save this article

Characterization of a Fast Battery Energy Storage System for Primary Frequency Response

Author

Listed:
  • Karl Stein

    (Center for Climate Physics, Institute for Basic Science (IBS), Pusan National University, Busan 46241, Korea)

  • Moe Tun

    (HNU Photonics LLC, Kahului, HI 96732, USA)

  • Marc Matsuura

    (Hawai’i Natural Energy Institute, SOEST, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA)

  • Richard Rocheleau

    (Hawai’i Natural Energy Institute, SOEST, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA)

Abstract

In response to increasing integration of renewable energy sources on electric grid systems, battery energy storage systems (BESSs) are being deployed world-wide to provide grid services, including fast frequency regulation. Without mitigating technologies, such as BESSs, highly variable renewables can cause operational and reliability problems on isolated grids. Prior to the deployment of a BESS, an electric utility company will typically perform modeling to estimate cost benefits and determine grid impacts. While there may be a comparison of grid operations before and after BESS installation, passive monitoring typically does not provide information needed to tune the BESS such that the desired services are maintained, while also minimizing the cycling of the BESS. This paper presents the results of testing from a live grid using a method that systematically characterizes the performance of a BESS. The method is sensitive enough to discern how changes in tuning parameters effect both grid service and the cycling of the BESS. This paper discusses the application of this methodology to a 1 MW BESS regulating the entire island of Hawaii (180 MW peak load) in-situ. Significant mitigation of renewable volatility was demonstrated while minimizing BESS cycling.

Suggested Citation

  • Karl Stein & Moe Tun & Marc Matsuura & Richard Rocheleau, 2018. "Characterization of a Fast Battery Energy Storage System for Primary Frequency Response," Energies, MDPI, vol. 11(12), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3358-:d:186896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raineri, R. & Rios, S. & Schiele, D., 2006. "Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison," Energy Policy, Elsevier, vol. 34(13), pages 1540-1555, September.
    2. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    3. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Baure & Matthieu Dubarry, 2020. "Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation," Energies, MDPI, vol. 13(10), pages 1-11, May.
    2. Sepasi, Saeed & Toledo, Silas & Kobayashi, Jonathan & Roose, Leon R. & Matsuura, Marc M. & Tran, Quynh T., 2023. "A practical solution for excess energy management in a diesel-backed microgrid with high renewable penetration," Renewable Energy, Elsevier, vol. 202(C), pages 581-588.
    3. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Karl Stein & Moe Tun & Keith Musser & Richard Rocheleau, 2018. "Evaluation of a 1 MW, 250 kW-hr Battery Energy Storage System for Grid Services for the Island of Hawaii," Energies, MDPI, vol. 11(12), pages 1-17, December.
    5. Houfei Lin & Jianxin Jin & Qidai Lin & Bo Li & Chengzhi Wei & Wenfa Kang & Minyou Chen, 2019. "Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System," Energies, MDPI, vol. 12(1), pages 1-17, January.
    6. Tae-Hwan Jin & Ki-Yeol Shin & Mo Chung & Geon-Pyo Lim, 2022. "Development and Performance Verification of Frequency Control Algorithm and Hardware Controller Using Real-Time Cyber Physical System Simulator," Energies, MDPI, vol. 15(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    2. Karl Stein & Moe Tun & Keith Musser & Richard Rocheleau, 2018. "Evaluation of a 1 MW, 250 kW-hr Battery Energy Storage System for Grid Services for the Island of Hawaii," Energies, MDPI, vol. 11(12), pages 1-17, December.
    3. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
    4. Bell, William Paul & Zheng, Xuemei, 2018. "Inclusive growth and climate change adaptation and mitigation in Australia and China : Removing barriers to solving wicked problems," MPRA Paper 84509, University Library of Munich, Germany.
    5. Viktorija Bobinaite & Artjoms Obushevs & Irina Oleinikova & Andrei Morch, 2018. "Economically Efficient Design of Market for System Services under the Web-of-Cells Architecture," Energies, MDPI, vol. 11(4), pages 1-29, March.
    6. Da Liu & Shou-Kai Wang & Jin-Chen Liu & Han Huang & Xing-Ping Zhang & Yi Feng & Wei-Jun Wang, 2017. "Optimum Subsidy to Promote Electric Boiler Investment to Accommodate Wind Power," Sustainability, MDPI, vol. 9(6), pages 1-11, May.
    7. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    8. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    9. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    10. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    11. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    12. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    13. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
    14. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    15. Yannick Perez & Marc Petit, 2016. "Transmission System Operator Regulation for Electric Vehicle Fleets: A Survey of the Issues," Post-Print hal-01424647, HAL.
    16. Codani, Paul & Perez, Yannick & Petit, Marc, 2016. "Financial shortfall for electric vehicles: Economic impacts of Transmission System Operators market designs," Energy, Elsevier, vol. 113(C), pages 422-431.
    17. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    18. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    19. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    20. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3358-:d:186896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.