IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3346-d186786.html
   My bibliography  Save this article

Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation

Author

Listed:
  • Jonas Kazda

    (Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Nicolaos Antonio Cutululis

    (Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control approaches benefit from computationally fast, linear models and therefore, in this work, we introduce the Dynamic Flow Predictor. It is a fast, control-oriented, dynamic, linear model of wind farm flow and operation that provides predictions of wind speed and turbine power. The model estimates wind turbine aerodynamic interaction using a linearized engineering wake model in combination with a delay process. The Dynamic Flow Predictor was tested on a two-turbine array to illustrate its main characteristics and on a large-scale wind farm, comparable to modern offshore wind farms, to illustrate its scalability and accuracy in a more realistic scale. The simulations were performed in SimWindFarm with wind turbines represented using the NREL 5 MW model. The results showed the suitability, accuracy, and computational speed of the modeling approach. In the study on the large-scale wind farm, rotor effective wind speed was estimated with a root-mean-square error ranging between 0.8% and 4.1%. In the same study, the computation time per iteration of the model was, on average, 2.1 × 10 − 5 s. It is therefore concluded that the presented modeling approach is well suited for use in wind farm control.

Suggested Citation

  • Jonas Kazda & Nicolaos Antonio Cutululis, 2018. "Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation," Energies, MDPI, vol. 11(12), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3346-:d:186786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Unai Fernandez-Gamiz & Ekaitz Zulueta & Ana Boyano & Igor Ansoategui & Irantzu Uriarte, 2017. "Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices," Energies, MDPI, vol. 10(6), pages 1-15, May.
    3. Hansen, Anca D. & Sørensen, Poul & Iov, Florin & Blaabjerg, Frede, 2006. "Centralised power control of wind farm with doubly fed induction generators," Renewable Energy, Elsevier, vol. 31(7), pages 935-951.
    4. Wang, Jianzhou & Hu, Jianming, 2015. "A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vec," Energy, Elsevier, vol. 93(P1), pages 41-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingming Liu & Yingwei Wang & Xiaodong Wang & Jiangsheng Zhu & Wai Hou Lio, 2019. "Active Power Dispatch for Supporting Grid Frequency Regulation in Wind Farms Considering Fatigue Load," Energies, MDPI, vol. 12(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
    2. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    3. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    4. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    5. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    6. Li, Hongmin & Wang, Jianzhou & Lu, Haiyan & Guo, Zhenhai, 2018. "Research and application of a combined model based on variable weight for short term wind speed forecasting," Renewable Energy, Elsevier, vol. 116(PA), pages 669-684.
    7. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    8. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    9. Wang, Lin & Tao, Rui & Hu, Huanling & Zeng, Yu-Rong, 2021. "Effective wind power prediction using novel deep learning network: Stacked independently recurrent autoencoder," Renewable Energy, Elsevier, vol. 164(C), pages 642-655.
    10. Liu, Tongxiang & Zhao, Qiujun & Wang, Jianzhou & Gao, Yuyang, 2021. "A novel interval forecasting system for uncertainty modeling based on multi-input multi-output theory: A case study on modern wind stations," Renewable Energy, Elsevier, vol. 163(C), pages 88-104.
    11. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    12. Wang, Cong & Zhang, Hongli & Fan, Wenhui & Ma, Ping, 2017. "A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction," Energy, Elsevier, vol. 138(C), pages 977-990.
    13. Li, Jingrui & Wang, Jianzhou & Zhang, Haipeng & Li, Zhiwu, 2022. "An innovative combined model based on multi-objective optimization approach for forecasting short-term wind speed: A case study in China," Renewable Energy, Elsevier, vol. 201(P1), pages 766-779.
    14. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    15. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    16. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    17. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Senjyu, Tomonobu & Kaneko, Toshiaki & Uehara, Akie & Yona, Atsushi & Sekine, Hideomi & Kim, Chul-Hwan, 2009. "Output power control for large wind power penetration in small power system," Renewable Energy, Elsevier, vol. 34(11), pages 2334-2343.
    19. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    20. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3346-:d:186786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.