IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2871-d177801.html
   My bibliography  Save this article

Random Violation Risk Degree Based Service Channel Routing Mechanism in Smart Grid

Author

Listed:
  • Sujie Shao

    (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Qingtao Zeng

    (Information Engineering College, Beijing Institute of Graphic Communication, Beijing 102600, China)

  • Shaoyong Guo

    (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Xuesong Qiu

    (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract

Smart gird, integrated power network with communication network, has brought an innovation of traditional power for future green energy. Optical fiber technology and synchronous digital hierarchy (SDH) technology is widely used in smart grid communication transmission network. It is a challenge to reduce impact of the availability of smart grid communication services caused by random failures and random time to repair. Firstly, we create a service channel violation risk degree ( SCVRD ) model to precisely track the violation risk change of communication service channel. It is denoted by the probability of service channel cumulative failure duration exceeding the prescribed duration. Secondly, a service channel violation risk degree routing mechanism is proposed to improve the availability of communication service. At last, the simulation is implemented with MATLAB and network data in one province are used as data instance. The simulation results show that the average service channel failure rate of availability-aware routing based on statistics (AAR-OS) algorithm and risk-aware provisioning algorithm are reduced by 15% and 6%, respectively.

Suggested Citation

  • Sujie Shao & Qingtao Zeng & Shaoyong Guo & Xuesong Qiu, 2018. "Random Violation Risk Degree Based Service Channel Routing Mechanism in Smart Grid," Energies, MDPI, vol. 11(11), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2871-:d:177801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiago D. P. Mendes & Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Smart Home Communication Technologies and Applications: Wireless Protocol Assessment for Home Area Network Resources," Energies, MDPI, vol. 8(7), pages 1-33, July.
    2. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    3. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    4. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aqdas Naz & Muhammad Umar Javed & Nadeem Javaid & Tanzila Saba & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids," Energies, MDPI, vol. 12(5), pages 1-30, March.
    2. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Lucas Cuadra & Miguel Del Pino & José Carlos Nieto-Borge & Sancho Salcedo-Sanz, 2017. "Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms," Energies, MDPI, vol. 10(8), pages 1-31, July.
    4. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    7. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    8. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    9. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    10. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    12. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    13. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    14. Grégoire-Zawilski, Myriam & Popp, David, 2024. "Do technology standards induce innovation in environmental technologies when coordination is important?," Research Policy, Elsevier, vol. 53(1).
    15. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    16. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    17. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    18. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    19. Francesca Ceglia & Elisa Marrasso & Samiran Samanta & Maurizio Sasso, 2022. "Addressing Energy Poverty in the Energy Community: Assessment of Energy, Environmental, Economic, and Social Benefits for an Italian Residential Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    20. Eduardo M. G. Rodrigues & Radu Godina & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Experimental Results on a Wireless Wattmeter Device for the Integration in Home Energy Management Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2871-:d:177801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.