IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2842-d177201.html
   My bibliography  Save this article

Effects of Aerodynamic Interactions of Closely-Placed Vertical Axis Wind Turbine Pairs

Author

Listed:
  • Jifeng Peng

    (Department of Mechanical Engineering, University of Alaska, Anchorage, AK 99508, USA)

Abstract

In this study, a numerical model was developed to study the effects of aerodynamic interactions between a pair of counter-rotating vertical axis wind turbines (VAWTs) in close proximity. In this model, the rotor rotation is not prescribed as a constant as in most other studies, but is determined by the moment of inertia and the total torque of the rotor, including the aerodynamic torque, generator torque, and a torque representing friction. This model enables study of the behavior of the rotor under an arbitrary ambient wind profile. The model was applied to an isolated rotor with five straight J-blades and pairs of identical rotors placed in close proximity. Compared with an isolated rotor, the aerodynamic interactions between the pair of rotors enhance the aerodynamic torques on the rotors and significantly increase the turbine power output on a per unit basis. The enhancement in turbine power output due to aerodynamic enhancement decreases with the distance between the pair of rotors.

Suggested Citation

  • Jifeng Peng, 2018. "Effects of Aerodynamic Interactions of Closely-Placed Vertical Axis Wind Turbine Pairs," Energies, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2842-:d:177201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Strom & Steven L. Brunton & Brian Polagye, 2017. "Intracycle angular velocity control of cross-flow turbines," Nature Energy, Nature, vol. 2(8), pages 1-9, August.
    2. Zamani, Mahdi & Maghrebi, Mohammad Javad & Varedi, Seyed Rasoul, 2016. "Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation," Renewable Energy, Elsevier, vol. 95(C), pages 109-126.
    3. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    4. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    5. Shaheen, Mohammed & Abdallah, Shaaban, 2016. "Development of efficient vertical axis wind turbine clustered farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 237-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    2. Yadav, Sandeep & Veeravalli, Srinivas V. & Singh, Sidh Nath, 2024. "Effect of rotor spacing, overlapping and non-overlapping, on the performance of a coupled counter-rotating twin-rotor VAWT using CFD," Renewable Energy, Elsevier, vol. 221(C).
    3. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    4. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.
    5. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Pagnini, Luisa & Piccardo, Giuseppe & Repetto, Maria Pia, 2018. "Full scale behavior of a small size vertical axis wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 41-55.
    4. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    5. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    6. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    7. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    8. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    9. Can Kang & Wisdom Opare & Chen Pan & Ziwen Zou, 2018. "Upstream Flow Control for the Savonius Rotor under Various Operation Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    10. Sengupta, A.R. & Biswas, A. & Gupta, R., 2019. "Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement," Renewable Energy, Elsevier, vol. 139(C), pages 1412-1427.
    11. Sagharichi, A. & Zamani, M. & Ghasemi, A., 2018. "Effect of solidity on the performance of variable-pitch vertical axis wind turbine," Energy, Elsevier, vol. 161(C), pages 753-775.
    12. Sébastien Le Fouest & Karen Mulleners, 2024. "Optimal blade pitch control for enhanced vertical-axis wind turbine performance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Jiang, Tieliu & Zhao, Yuze & Wang, Shengwen & Zhang, Lidong & Li, Guohao, 2024. "Aerodynamic characterization of a H-Darrieus wind turbine with a Drag-Disturbed Flow device installation," Energy, Elsevier, vol. 292(C).
    14. Mohanasundaram Anthony & Valsalal Prasad & Kannadasan Raju & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2020. "Design of Rotor Blades for Vertical Axis Wind Turbine with Wind Flow Modifier for Low Wind Profile Areas," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    15. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    16. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    17. Lin Pan & Ze Zhu & Haodong Xiao & Leichong Wang, 2021. "Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(19), pages 1-29, October.
    18. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    19. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    20. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2842-:d:177201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.