IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2803-d176532.html
   My bibliography  Save this article

Synchronous Compensator Based on Doubly Fed Induction Generator to Improve the Power Quality under Unbalanced Grid Voltage Conditions

Author

Listed:
  • Paulo H. P. Silva

    (Department of Electrical Engineering, Federal University of Ceara, Fortaleza CE 60020-181, Brazil
    Department of Energy, University of Fortaleza, Fortaleza CE 60811-905, Brazil)

  • Francisco Kleber de A. Lima

    (Department of Electrical Engineering, Federal University of Ceara, Fortaleza CE 60020-181, Brazil)

  • Jean M. L. Fonseca

    (Department of Electrical Engineering, Federal University of Ceara, Fortaleza CE 60020-181, Brazil)

  • Carlos Gustavo C. Branco

    (Department of Electrical Engineering, Federal University of Ceara, Fortaleza CE 60020-181, Brazil)

  • Celso R. Schmidlin Júnior

    (Federal Institute of Education, Science and Technology of Ceara, Maracanau CE 61939-140, Brazil)

Abstract

Currently, power quality is a major issue for all sorts of customers. End users of the electricity service in industrial, commercial and residential sectors have nonlinear loads or loads that are sensitive to disturbances in the electric power supply. In this context, this paper presents a study on four different control strategies for the application of synchronous compensator based on a doubly-fed induction generator (DFIG). The mathematical modeling developed to support the proposal of this article is validated through computational simulations and experimental results. This work contains strong arguments that support the idea that the proposed synchronous compensator can be employed to cancel oscillations caused by imbalances in the grid, and can furthermore inject or absorb reactive and active power without the characteristic oscillations that arise when negative sequence components are present in the system.

Suggested Citation

  • Paulo H. P. Silva & Francisco Kleber de A. Lima & Jean M. L. Fonseca & Carlos Gustavo C. Branco & Celso R. Schmidlin Júnior, 2018. "Synchronous Compensator Based on Doubly Fed Induction Generator to Improve the Power Quality under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2803-:d:176532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco G. Montoya & Raul Baños & Alfredo Alcayde & Maria G. Montoya & Francisco Manzano-Agugliaro, 2018. "Power Quality: Scientific Collaboration Networks and Research Trends," Energies, MDPI, vol. 11(8), pages 1-16, August.
    2. Ming Li & Xing Zhang & Wei Zhao, 2018. "A Novel Stability Improvement Strategy for a Multi-Inverter System in a Weak Grid Utilizing Dual-Mode Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manuel Arrabal-Campos & Javier Roldán Pérez, 2021. "Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    2. Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2018. "The Higher Education Sustainability through Virtual Laboratories: The Spanish University as Case of Study," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    3. Quynh T.T Tran & Maria Luisa Di Silvestre & Eleonora Riva Sanseverino & Gaetano Zizzo & Thanh Nam Pham, 2018. "Driven Primary Regulation for Minimum Power Losses Operation in Islanded Microgrids," Energies, MDPI, vol. 11(11), pages 1-17, October.
    4. Castilla Manuel V. & Martin Francisco, 2021. "A Powerful Tool for Optimal Control of Energy Systems in Sustainable Buildings: Distortion Power Bivector," Energies, MDPI, vol. 14(8), pages 1-17, April.
    5. Tie Li & Yunlu Li & Junyou Yang & Weichun Ge & Bo Hu, 2019. "A Modified DSC-Based Grid Synchronization Method for a High Renewable Penetrated Power System Under Distorted Voltage Conditions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    6. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    7. Mohamed Tolba & Hegazy Rezk & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2018. "A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids," Energies, MDPI, vol. 11(10), pages 1-34, September.
    8. Dongsheng Yang & Zhanchao Ma & Xiaoting Gao & Zhuang Ma & Enchang Cui, 2019. "Control Strategy of Intergrated Photovoltaic-UPQC System for DC-Bus Voltage Stability and Voltage Sags Compensation," Energies, MDPI, vol. 12(20), pages 1-21, October.
    9. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manuel Arrabal-Campos & Javier Roldán-Pérez, 2021. "Vector Geometric Algebra in Power Systems: An Updated Formulation of Apparent Power under Non-Sinusoidal Conditions," Mathematics, MDPI, vol. 9(11), pages 1-18, June.
    10. Panos C. Papageorgiou & Konstantinos F. Krommydas & Antonio T. Alexandridis, 2020. "Validation of Novel PLL-driven PI Control Schemes on Supporting VSIs in Weak AC-Connections," Energies, MDPI, vol. 13(6), pages 1-21, March.
    11. Supanat Chamchuen & Apirat Siritaratiwat & Pradit Fuangfoo & Puripong Suthisopapan & Pirat Khunkitti, 2021. "High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm," Energies, MDPI, vol. 14(5), pages 1-18, February.
    12. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    13. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers," Energies, MDPI, vol. 15(18), pages 1-12, September.
    14. Claudio Burgos-Mellado & Alessandro Costabeber & Mark Sumner & Roberto Cárdenas-Dobson & Doris Sáez, 2019. "Small-Signal Modelling and Stability Assessment of Phase-Locked Loops in Weak Grids," Energies, MDPI, vol. 12(7), pages 1-30, March.
    15. Gabriel Nicolae Popa & Angela Iagăr & Corina Maria Diniș, 2020. "Considerations on Current and Voltage Unbalance of Nonlinear Loads in Residential and Educational Sectors," Energies, MDPI, vol. 14(1), pages 1-29, December.
    16. Mila Cascajares & Alfredo Alcayde & Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2021. "The Bibliometric Literature on Scopus and WoS: The Medicine and Environmental Sciences Categories as Case of Study," IJERPH, MDPI, vol. 18(11), pages 1-31, May.
    17. Alena Otcenasova & Andrej Bolf & Juraj Altus & Michal Regula, 2019. "The Influence of Power Quality Indices on Active Power Losses in a Local Distribution Grid," Energies, MDPI, vol. 12(7), pages 1-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2803-:d:176532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.