IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2702-d174782.html
   My bibliography  Save this article

Bidirectional Interleaved PWM Converter with High Voltage-Conversion Ratio and Automatic Current Balancing Capability for Single-Cell Battery Power System in Small Scientific Satellites

Author

Listed:
  • Masatoshi Uno

    (College of Engineering, Ibaraki University, Hitachi 316-8511, Japan)

  • Masahiko Inoue

    (College of Engineering, Ibaraki University, Hitachi 316-8511, Japan)

  • Yusuke Sato

    (College of Engineering, Ibaraki University, Hitachi 316-8511, Japan)

  • Hikaru Nagata

    (College of Engineering, Ibaraki University, Hitachi 316-8511, Japan)

Abstract

Single-cell battery power systems are a promising bus architecture for small scientific satellites. However, to bridge the huge voltage gap between a single-cell battery and power bus, bidirectional converters with a high voltage conversion ratio and a large current capability for the low-voltage side are necessary. This article proposes a bidirectional interleaved pulse width modulation (PWM) converter with a high voltage conversion ratio and an automatic current balancing capability. By adding capacitors to conventional interleaved PWM converters, not only are inductor currents automatically balanced without feedback control or current sensors, but also voltage conversion ratios at a given duty cycle can be enhanced. Furthermore, the added capacitors can reduce voltage stresses of switches and charged-discharged energies of inductors, realizing more efficient power conversion and reduced circuit volume in comparison with conventional converters. A 100-W prototype was built for experimental verification, and results demonstrated the fundamental characteristics and efficacy of the proposed converter.

Suggested Citation

  • Masatoshi Uno & Masahiko Inoue & Yusuke Sato & Hikaru Nagata, 2018. "Bidirectional Interleaved PWM Converter with High Voltage-Conversion Ratio and Automatic Current Balancing Capability for Single-Cell Battery Power System in Small Scientific Satellites," Energies, MDPI, vol. 11(10), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2702-:d:174782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liran Li & Zhiwu Huang & Heng Li & Honghai Lu, 2016. "A High-Efficiency Voltage Equalization Scheme for Supercapacitor Energy Storage System in Renewable Generation Applications," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    2. Yunlong Shang & Qi Zhang & Naxin Cui & Chenghui Zhang, 2017. "A Cell-to-Cell Equalizer Based on Three-Resonant-State Switched-Capacitor Converters for Series-Connected Battery Strings," Energies, MDPI, vol. 10(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min-Sup Song & In-Ho Cho & Jae-Bum Lee, 2020. "± 180° Discontinuous PWM for Single-Phase PWM Converter of High-Speed Railway Propulsion System," Energies, MDPI, vol. 13(7), pages 1-16, March.
    2. Ahmed Al Amerl & Ismail Oukkacha & Mamadou Baïlo Camara & Brayima Dakyo, 2021. "Real-Time Control Strategy of Fuel Cell and Battery System for Electric Hybrid Boat Application," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    2. João P. D. Miranda & Luis A. M. Barros & José Gabriel Pinto, 2023. "A Review on Power Electronic Converters for Modular BMS with Active Balancing," Energies, MDPI, vol. 16(7), pages 1-20, April.
    3. Xintian Liu & Zhihao Wan & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2018. "A Unified Control Strategy for Inductor-Based Active Battery Equalisation Schemes," Energies, MDPI, vol. 11(2), pages 1-16, February.
    4. Mahammad A. Hannan & Mohammad M. Hoque & Pin J. Ker & Rawshan A. Begum & Azah Mohamed, 2017. "Charge Equalization Controller Algorithm for Series-Connected Lithium-Ion Battery Storage Systems: Modeling and Applications," Energies, MDPI, vol. 10(9), pages 1-20, September.
    5. Ireneusz Plebankiewicz & Krzysztof Artur Bogdanowicz & Agnieszka Iwan, 2020. "Photo-Rechargeable Electric Energy Storage Systems Based on Silicon Solar Cells and Supercapacitor-Engineering Concept," Energies, MDPI, vol. 13(15), pages 1-15, July.
    6. Shun-Chung Wang & Chun-Yu Liu & Yi-Hua Liu, 2018. "A Fast Equalizer with Adaptive Balancing Current Control," Energies, MDPI, vol. 11(5), pages 1-15, April.
    7. Yat Chi Fong & Ka Wai Eric Cheng & S. Raghu Raman & Xiaolin Wang, 2018. "Multi-Port Zero-Current Switching Switched-Capacitor Converters for Battery Management Applications," Energies, MDPI, vol. 11(8), pages 1-17, July.
    8. Sang-Won Lee & Yoon-Geol Choi & Bongkoo Kang, 2019. "Active Charge Equalizer of Li-Ion Battery Cells Using Double Energy Carriers," Energies, MDPI, vol. 12(12), pages 1-13, June.
    9. Qingwu Gong & Jiazhi Lei, 2017. "Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    10. Rui Xiong & Hailong Li & Xuan Zhou, 2017. "Advanced Energy Storage Technologies and Their Applications (AESA2017)," Energies, MDPI, vol. 10(9), pages 1-3, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2702-:d:174782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.