IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2517-d171304.html
   My bibliography  Save this article

Modelling Offshore Wave farms for Coastal Process Impact Assessment: Waves, Beach Morphology, and Water Users

Author

Listed:
  • Christopher Stokes

    (Plymouth University, School of Biological and Marine Sciences, Drake Circus PL4 8AA, UK)

  • Daniel C. Conley

    (Plymouth University, School of Biological and Marine Sciences, Drake Circus PL4 8AA, UK)

Abstract

The emerging global wave energy industry has the potential to contribute to the world’s energy needs, but careful consideration of potential impacts to coastal processes in the form of an impact assessment is required for each new wave energy site. Methods for conducting a coastal processes impact assessment for wave energy arrays vary considerably in the scientific literature, particularly with respect to characterising the energy absorption of a wave energy converter (WEC) array in a wave model. In this paper, modelling methods used in the scientific literature to study wave farm impacts on coastal processes are reviewed, with the aim of determining modelling guidance for impact assessments. Effects on wave climate, beach morphology, and the surfing resource for coastal water users are considered. A novel parameterisation for the WEC array transmission coefficient is presented that, for the first time, uses the permitted power rating of the wave farm, which is usually well defined at the impact assessment stage, to estimate the maximum likely absorption of a permitted WEC array. A coastal processes impact assessment case study from a wave farm in south-west Ireland is used to illustrate the application of the reviewed methods, and demonstrates that using the new ‘rated power transmission coefficient’ rather than a WEC-derived transmission coefficient or complete energy absorption scenario can make the difference between significant and non-significant levels of coastal impacts being predicted.

Suggested Citation

  • Christopher Stokes & Daniel C. Conley, 2018. "Modelling Offshore Wave farms for Coastal Process Impact Assessment: Waves, Beach Morphology, and Water Users," Energies, MDPI, vol. 11(10), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2517-:d:171304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    2. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    3. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    4. Rusu, Eugen & Guedes Soares, C., 2013. "Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 58(C), pages 34-49.
    5. McLachlan, Carly, 2009. "'You don't do a chemistry experiment in your best china': Symbolic interpretations of place and technology in a wave energy case," Energy Policy, Elsevier, vol. 37(12), pages 5342-5350, December.
    6. Tănase Zanopol, Andrei & Onea, Florin & Rusu, Eugen, 2014. "Coastal impact assessment of a generic wave farm operating in the Romanian nearshore," Energy, Elsevier, vol. 72(C), pages 652-670.
    7. Chang, G. & Ruehl, K. & Jones, C.A. & Roberts, J. & Chartrand, C., 2016. "Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions," Renewable Energy, Elsevier, vol. 89(C), pages 636-648.
    8. Lenee-Bluhm, Pukha & Paasch, Robert & Özkan-Haller, H. Tuba, 2011. "Characterizing the wave energy resource of the US Pacific Northwest," Renewable Energy, Elsevier, vol. 36(8), pages 2106-2119.
    9. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J., 2014. "Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes," Renewable Energy, Elsevier, vol. 72(C), pages 311-321.
    10. Jeremiah Pastor & Yucheng Liu, 2016. "Wave Climate Resource Analysis Based on a Revised Gamma Spectrum for Wave Energy Conversion Technology," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    11. Smith, Helen C.M. & Pearce, Charles & Millar, Dean L., 2012. "Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site," Renewable Energy, Elsevier, vol. 40(1), pages 51-64.
    12. Carballo, R. & Iglesias, G., 2013. "Wave farm impact based on realistic wave-WEC interaction," Energy, Elsevier, vol. 51(C), pages 216-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Barambones & Jose M. Gonzalez de Durana & Isidro Calvo, 2018. "Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System," Energies, MDPI, vol. 11(11), pages 1-27, October.
    2. Gael Verao Fernández & Vasiliki Stratigaki & Peter Troch, 2019. "Irregular Wave Validation of a Coupling Methodology for Numerical Modelling of Near and Far Field Effects of Wave Energy Converter Arrays," Energies, MDPI, vol. 12(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    2. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    3. Veigas, M. & Ramos, V. & Iglesias, G., 2014. "A wave farm for an island: Detailed effects on the nearshore wave climate," Energy, Elsevier, vol. 69(C), pages 801-812.
    4. David, Daniel R. & Rijnsdorp, Dirk P. & Hansen, Jeff E. & Lowe, Ryan J. & Buckley, Mark L., 2022. "Predicting coastal impacts by wave farms: A comparison of wave-averaged and wave-resolving models," Renewable Energy, Elsevier, vol. 183(C), pages 764-780.
    5. Carballo, R. & Arean, N. & Álvarez, M. & López, I. & Castro, A. & López, M. & Iglesias, G., 2019. "Wave farm planning through high-resolution resource and performance characterization," Renewable Energy, Elsevier, vol. 135(C), pages 1097-1107.
    6. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
    7. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    8. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    9. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
    10. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    11. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    12. Chang, G. & Ruehl, K. & Jones, C.A. & Roberts, J. & Chartrand, C., 2016. "Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions," Renewable Energy, Elsevier, vol. 89(C), pages 636-648.
    13. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    14. Rijnsdorp, Dirk P. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Understanding coastal impacts by nearshore wave farms using a phase-resolving wave model," Renewable Energy, Elsevier, vol. 150(C), pages 637-648.
    15. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    16. Carlo Lo Re & Giorgio Manno & Giuseppe Ciraolo & Giovanni Besio, 2019. "Wave Energy Assessment around the Aegadian Islands (Sicily)," Energies, MDPI, vol. 12(3), pages 1-20, January.
    17. Greenwood, Charles & Christie, David & Venugopal, Vengatesan & Morrison, James & Vogler, Arne, 2016. "Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models," Energy, Elsevier, vol. 113(C), pages 258-266.
    18. Carballo, R. & Sánchez, M. & Ramos, V. & Fraguela, J.A. & Iglesias, G., 2015. "The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain)," Energy, Elsevier, vol. 82(C), pages 138-146.
    19. Dina Silva & Eugen Rusu & C. Guedes Soares, 2018. "The Effect of a Wave Energy Farm Protecting an Aquaculture Installation," Energies, MDPI, vol. 11(8), pages 1-17, August.
    20. Astariz, S. & Iglesias, G., 2017. "The collocation feasibility index – A method for selecting sites for co-located wave and wind farms," Renewable Energy, Elsevier, vol. 103(C), pages 811-824.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2517-:d:171304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.