IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1199-d108117.html
   My bibliography  Save this article

Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes

Author

Listed:
  • Xi Wu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Zhengyu Zhou

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Gang Liu

    (Jiangsu Electric Power Company Economic Research Institute, Nanjing 211102, China)

  • Wanchun Qi

    (Jiangsu Electric Power Company Economic Research Institute, Nanjing 211102, China)

  • Zhenjian Xie

    (Jiangsu Electric Power Company Economic Research Institute, Nanjing 211102, China)

Abstract

The successful application of the unified power flow controller (UPFC) provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO) algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.

Suggested Citation

  • Xi Wu & Zhengyu Zhou & Gang Liu & Wanchun Qi & Zhenjian Xie, 2017. "Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes," Energies, MDPI, vol. 10(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1199-:d:108117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyungsung An & Kyung-Bin Song & Kyeon Hur, 2017. "Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration," Energies, MDPI, vol. 10(5), pages 1-15, May.
    2. Joaquim Monteiro & Sónia Pinto & Aranzazu Delgado Martin & José Fernando Silva, 2017. "A New Real Time Lyapunov Based Controller for Power Quality Improvement in Unified Power Flow Controllers Using Direct Matrix Converters," Energies, MDPI, vol. 10(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    2. Victor H. Hinojosa & Francisco Gonzalez-Longatt, 2018. "Preventive Security-Constrained DCOPF Formulation Using Power Transmission Distribution Factors and Line Outage Distribution Factors," Energies, MDPI, vol. 11(6), pages 1-13, June.
    3. Luis M. Leon & Arturo S. Bretas & Sergio Rivera, 2020. "Quadratically Constrained Quadratic Programming Formulation of Contingency Constrained Optimal Power Flow with Photovoltaic Generation," Energies, MDPI, vol. 13(13), pages 1-21, June.
    4. Juan Toctaquiza & Diego Carrión & Manuel Jaramillo, 2023. "An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks," Energies, MDPI, vol. 16(6), pages 1-17, March.
    5. Victor H. Hinojosa, 2020. "Comparing Corrective and Preventive Security-Constrained DCOPF Problems Using Linear Shift-Factors," Energies, MDPI, vol. 13(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    2. Alberto Duran & Efrain Ibaceta & Matias Diaz & Felix Rojas & Roberto Cardenas & Hector Chavez, 2020. "Control of a Modular Multilevel Matrix Converter for Unified Power Flow Controller Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    3. Jun Bi & Yongxing Wang & Shuai Sun & Wei Guan, 2018. "Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing," Energies, MDPI, vol. 11(5), pages 1-18, April.
    4. Zain Anwer Memon & Riccardo Trinchero & Paolo Manfredi & Flavio Canavero & Igor S. Stievano, 2020. "Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-18, September.
    5. Gracita Batista Rosas & Elizete Maria Lourenço & Djalma Mosqueira Falcão & Thelma Solange Piazza Fernandes, 2019. "An Expeditious Methodology to Assess the Effects of Intermittent Generation on Power Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    6. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).
    7. Victor H. Hinojosa, 2020. "Comparing Corrective and Preventive Security-Constrained DCOPF Problems Using Linear Shift-Factors," Energies, MDPI, vol. 13(3), pages 1-16, January.
    8. Umar Fitra Ramadhan & Jaewan Suh & Sungchul Hwang & Jaehyeong Lee & Minhan Yoon, 2022. "A Comprehensive Study of HVDC Link with Reserve Operation Control in a Multi-Infeed Direct Current Power System," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    9. Neofytos Neofytou & Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2019. "Modeling Vehicles to Grid as a Source of Distributed Frequency Regulation in Isolated Grids with Significant RES Penetration," Energies, MDPI, vol. 12(4), pages 1-23, February.
    10. Akhtar Hussain & Hak-Man Kim, 2020. "Goal-Programming-Based Multi-Objective Optimization in Off-Grid Microgrids," Sustainability, MDPI, vol. 12(19), pages 1-18, October.
    11. Jinlian Liu & Zheng Xu & Liang Xiao, 2019. "Comprehensive Power Flow Analyses and Novel Feedforward Coordination Control Strategy for MMC-Based UPFC," Energies, MDPI, vol. 12(5), pages 1-31, March.
    12. Ruifeng Shi & Jie Zhang & Hao Su & Zihang Liang & Kwang Y. Lee, 2020. "An Economic Penalty Scheme for Optimal Parking Lot Utilization with EV Charging Requirements," Energies, MDPI, vol. 13(22), pages 1-21, November.
    13. Jean-Michel Clairand & Javier Rodríguez-García & Carlos Álvarez-Bel, 2018. "Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation," Energies, MDPI, vol. 11(11), pages 1-21, November.
    14. Asare Koduah & Francis Boafo Effah, 2022. "Fuzzy-Logic-Controlled Hybrid Active Filter for Matrix Converter Input Current Harmonics," Energies, MDPI, vol. 15(20), pages 1-19, October.
    15. Ruifeng Shi & Shaopeng Li & Changhao Sun & Kwang Y. Lee, 2018. "Adjustable Robust Optimization Algorithm for Residential Microgrid Multi-Dispatch Strategy with Consideration of Wind Power and Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-22, August.
    16. Yusuf A. Sha’aban & Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2017. "Bi-Directional Coordination of Plug-In Electric Vehicles with Economic Model Predictive Control," Energies, MDPI, vol. 10(10), pages 1-20, September.
    17. Jianwei Zhang & Margarita Norambuena & Li Li & David Dorrell & Jose Rodriguez, 2019. "Sequential Model Predictive Control of Three-Phase Direct Matrix Converter," Energies, MDPI, vol. 12(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1199-:d:108117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.