IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1190-d107905.html
   My bibliography  Save this article

An Investigation into the Effect of Scour on the Loading and Deformation Responses of Monopile Foundations

Author

Listed:
  • Wei-Chen Tseng

    (Department of Civil Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Yu-Shu Kuo

    (Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Jing-Wen Chen

    (Department of Civil Engineering, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

Severe foundation scour may occur around monopile foundations of offshore wind turbines due to currents and waves. The so-called p-y curves method is suggested in the existing design recommendations to determine the behavior of monopiles unprotected against scour and the reduction of effective soil stress is accounted for by the extreme scour depth. This conservative design approach does not consider the geometry of the scour hole and the effect of pile diameter on the soil resistance. An underestimated foundation stiffness would be obtained, thereby influencing the predicted overall response of the support structure of an offshore wind turbine. In this study, we calculated the load-deformation response and foundation stiffness of a monopile when scour occurred. The influence of pile diameter on the initial modulus of subgrade reaction, and the modification of the ultimate soil resistance of a monopile subject to scour are evaluated. The commercial software BLADED was used to simulate the dynamic response of the reference offshore wind turbine with monopile unprotected against scour at Chang-Bin offshore wind farm in Taiwan Strait. The results showed that when the p-y curve suggested by existing design regulation was used to calculate the load-deformation response, the foundation stiffness was underestimated where the scour depth was greater than the pile diameter, but the foundation stiffness was overestimated when the scour depth was less than the pile diameter.

Suggested Citation

  • Wei-Chen Tseng & Yu-Shu Kuo & Jing-Wen Chen, 2017. "An Investigation into the Effect of Scour on the Loading and Deformation Responses of Monopile Foundations," Energies, MDPI, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1190-:d:107905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu-Kai Wang & Juin-Fu Chai & Yu-Wen Chang & Ti-Ying Huang & Yu-Shu Kuo, 2016. "Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait," Energies, MDPI, vol. 9(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Chen Tseng & Yu-Shu Kuo & Kung-Chun Lu & Jing-Wen Chen & Chiou-Fong Chung & Ruey-Chyi Chen, 2018. "Effect of Scour on the Natural Frequency Responses of the Meteorological Mast in the Taiwan Strait," Energies, MDPI, vol. 11(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    2. Wei-Chen Tseng & Yu-Shu Kuo & Kung-Chun Lu & Jing-Wen Chen & Chiou-Fong Chung & Ruey-Chyi Chen, 2018. "Effect of Scour on the Natural Frequency Responses of the Meteorological Mast in the Taiwan Strait," Energies, MDPI, vol. 11(4), pages 1-18, April.
    3. Mark Richmond & Ursula Smolka & Athanasios Kolios, 2020. "Feasibility for Damage Identification in Offshore Wind Jacket Structures through Monitoring of Global Structural Dynamics," Energies, MDPI, vol. 13(21), pages 1-24, November.
    4. Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1190-:d:107905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.