IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1184-d107746.html
   My bibliography  Save this article

Interference-Aware PAPR Reduction Scheme to Increase the Energy Efficiency of Large-Scale MIMO-OFDM Systems

Author

Listed:
  • Byung Moo Lee

    (School of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea)

  • Youngok Kim

    (Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea)

Abstract

Large-scale (LS) multi-user (MU) multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) is considered to be a desirable signal transmission scheme because it can significantly improve the energy efficiency (EE) and spectral efficiency (SE) of the system. However, there are many difficulties in realizing an LS-MU-MIMO-OFDM system, and one of these is its high peak-to-average power ratio (PAPR), which results in serious nonlinear signal distortion and power inefficiency of the power amplifier (PA). LS-MIMO-OFDM systems require a lot of PAs, which are necessary to be connected to each antenna. To compensate for the PA nonlinearity and increase the efficiency, a digital pre-distorter (DPD) is very popular and has been successfully implemented in current base stations (BSs). However, a DPD is very difficult to use in an LS-MU-MIMO-OFDM system because it is expensive, but should be applied to each antenna. Therefore, a considerate scheme of signal processing is necessary to cope with the PA nonliearity issue of the LS-MU-MIMO-OFDM system. In this paper, we propose an interference-aware iterative clipping and filtering peak-to-average power ratio (PAPR) reduction scheme for LS-MU-MIMO-OFDM systems. In the proposed scheme, the clipping level in the clipping process is adaptively adjusted based on any kind of interference level that exists in the general communication environment. In particular, when matched filtering (MF) precoding is used for the LS-MU-MIMO-OFDM, the inter-user interference (IUI) always exists with a practical number of transmitter (TX) antennas, and this inevitable IUI level can be a decision point for the clipping ratio (CR). Choosing a proper CR to make the clipping noise lower than IUI has a very high benefit for the EE improvement of the system. The results of numerical analysis show that the proposed scheme can induce a very effective peak-to-average power ratio (PAPR) performance with little SE loss.

Suggested Citation

  • Byung Moo Lee & Youngok Kim, 2017. "Interference-Aware PAPR Reduction Scheme to Increase the Energy Efficiency of Large-Scale MIMO-OFDM Systems," Energies, MDPI, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1184-:d:107746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao-Liang Chung, 2016. "A Novel Algorithm for Efficient Downlink Packet Scheduling for Multiple-Component-Carrier Cellular Systems," Energies, MDPI, vol. 9(11), pages 1-14, November.
    2. Jaeik Jeong & Hongseok Kim, 2016. "On Optimal Cell Flashing for Reducing Delay and Saving Energy in Wireless Networks," Energies, MDPI, vol. 9(10), pages 1-13, September.
    3. Hyun-Ho Choi & Jung-Ryun Lee, 2016. "A Biologically-Inspired Power Control Algorithm for Energy-Efficient Cellular Networks," Energies, MDPI, vol. 9(3), pages 1-16, March.
    4. Byung Moo Lee & Youngok Kim, 2016. "Design of an Energy Efficient Future Base Station with Large-Scale Antenna System," Energies, MDPI, vol. 9(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Preetjot Kaur & Roopali Garg & Vinay Kukreja, 2023. "Energy-efficiency schemes for base stations in 5G heterogeneous networks: a systematic literature review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 84(1), pages 115-151, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung Moo Lee & Youngok Kim, 2016. "Design of an Energy Efficient Future Base Station with Large-Scale Antenna System," Energies, MDPI, vol. 9(12), pages 1-17, December.
    2. Hojin Kim & Jaewoo So & Hongseok Kim, 2022. "Carbon-Neutral Cellular Network Operation Based on Deep Reinforcement Learning," Energies, MDPI, vol. 15(12), pages 1-13, June.
    3. Byung Moo Lee, 2017. "Energy Efficiency Gain of Cellular Base Stations with Large-Scale Antenna Systems for Green Information and Communication Technology," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    4. Byung Moo Lee & You Seung Rim & Wonjong Noh, 2017. "A combination of selected mapping and clipping to increase energy efficiency of OFDM systems," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-25, October.
    5. Yao-Liang Chung, 2017. "Energy-Efficient Use of Licensed and Unlicensed Bands in D2D-Assisted Cellular Network Systems," Energies, MDPI, vol. 10(11), pages 1-16, November.
    6. Faran Ahmed & Muhammad Naeem & Waleed Ejaz & Muhammad Iqbal & Alagan Anpalagan & Hyung Seok Kim, 2018. "Renewable Energy Assisted Traffic Aware Cellular Base Station Energy Cooperation," Energies, MDPI, vol. 11(1), pages 1-19, January.
    7. Yao-Liang Chung, 2017. "An Energy-Efficient Coverage Algorithm for Macrocell—Small Cell Network Systems," Energies, MDPI, vol. 10(9), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1184-:d:107746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.