IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1893-d119255.html
   My bibliography  Save this article

Energy-Efficient Use of Licensed and Unlicensed Bands in D2D-Assisted Cellular Network Systems

Author

Listed:
  • Yao-Liang Chung

    (Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan)

Abstract

To date, the amount of research conducted regarding the subject of energy-efficient transmission in device-to-device (D2D)-assisted cellular network systems simultaneously utilizing both licensed and unlicensed bands is lacking. This topic is of substantial relevance to emerging 5th-generation (5G) cellular network systems, so the present study was conducted in order to address it in a practical manner. Specifically, this study proposes a simple yet effective algorithm aimed at ensuring efficient energy usage when such network systems make transmissions while utilizing both licensed and unlicensed bands. Based on novel system configurations with respect to bandwidth and link mode configurations, the proposed D2D-assisted transmission algorithm was designed with a system-level perspective in mind in order to yield greater efficiency in terms of transmission mode selection and link mode selection. As a result of these features, the proposed algorithm can not only maintain acceptable rates of transmission for all the connected users, but can also enhance system performance by a significant degree in terms of both energy efficiency and connection efficiency. Moreover, the results of simulations conducted to test the algorithm indicate that it is not only feasible, but, given its simple yet effective design, also easy to implement, such that it can serve as a valuable reference for the operators of 5G networks.

Suggested Citation

  • Yao-Liang Chung, 2017. "Energy-Efficient Use of Licensed and Unlicensed Bands in D2D-Assisted Cellular Network Systems," Energies, MDPI, vol. 10(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1893-:d:119255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao-Liang Chung, 2017. "An Energy-Efficient Coverage Algorithm for Macrocell—Small Cell Network Systems," Energies, MDPI, vol. 10(9), pages 1-23, September.
    2. Yao-Liang Chung, 2016. "A Novel Algorithm for Efficient Downlink Packet Scheduling for Multiple-Component-Carrier Cellular Systems," Energies, MDPI, vol. 9(11), pages 1-14, November.
    3. Yao-Liang Chung, 2016. "A Novel Power-Saving Transmission Scheme for Multiple-Component-Carrier Cellular Systems," Energies, MDPI, vol. 9(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao-Liang Chung, 2017. "An Energy-Efficient Coverage Algorithm for Macrocell—Small Cell Network Systems," Energies, MDPI, vol. 10(9), pages 1-23, September.
    2. Sorrentino, Marco & Bruno, Marco & Trifirò, Alena & Rizzo, Gianfranco, 2019. "An innovative energy efficiency metric for data analytics and diagnostics in telecommunication applications," Applied Energy, Elsevier, vol. 242(C), pages 1539-1548.
    3. Byung Moo Lee & Youngok Kim, 2016. "Design of an Energy Efficient Future Base Station with Large-Scale Antenna System," Energies, MDPI, vol. 9(12), pages 1-17, December.
    4. Faizan Qamar & M. H. D. Nour Hindia & Kaharudin Dimyati & Kamarul Ariffin Noordin & Iraj Sadegh Amiri, 2019. "Interference management issues for the future 5G network: a review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(4), pages 627-643, August.
    5. Byung Moo Lee & Youngok Kim, 2017. "Interference-Aware PAPR Reduction Scheme to Increase the Energy Efficiency of Large-Scale MIMO-OFDM Systems," Energies, MDPI, vol. 10(8), pages 1-16, August.
    6. Yao-Liang Chung, 2016. "A Novel Algorithm for Efficient Downlink Packet Scheduling for Multiple-Component-Carrier Cellular Systems," Energies, MDPI, vol. 9(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1893-:d:119255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.