IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1108-d106447.html
   My bibliography  Save this article

Optimization of Active Current for Large-Scale Wind Turbines Integrated into Weak Grids for Power System Transient Stability Improvement

Author

Listed:
  • Dongliang Zhang

    (State Key Laboratory of Advanced Electromagnetic Engineering Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xiaoming Yuan

    (State Key Laboratory of Advanced Electromagnetic Engineering Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Power system transient stability is a challenge when integrating large-scale wind turbines into weak grids. This paper addresses the issue of transient stability in such situations by optimizing a wind turbine’s active current behavior. A wind turbine’s active current reference controller and its setting optimization method are proposed based on analyses of two associated problems: the mechanism for improving transient stability of a single (synchronous) machine infinite bus (SMIB) system, as well as the various physical factor dependencies dictating how active and reactive wind turbine currents affect the swing dynamics of synchronous machines. Analysis of the first problem guided the design of the controller’s main structure. Analysis of the second problem guided selection of the control object within a wind turbine’s active and reactive currents, as well as helped recognition of the influential physical factors that must be considered in the parameter setting process. The efficiency of the controller and the validity of the analyses were verified by case studies using Kundur’s two-area system.

Suggested Citation

  • Dongliang Zhang & Xiaoming Yuan, 2017. "Optimization of Active Current for Large-Scale Wind Turbines Integrated into Weak Grids for Power System Transient Stability Improvement," Energies, MDPI, vol. 10(8), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1108-:d:106447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongyi Liu & Chongru Liu & Gengyin Li & Yong Liu & Yilu Liu, 2015. "Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory," Energies, MDPI, vol. 8(12), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio T. Alexandridis, 2019. "Studying State Convergence of Input-to-State Stable Systems with Applications to Power System Analysis," Energies, MDPI, vol. 13(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    2. Chunlei Zhang & Xiaodong Chu & Bing Zhang & Linlin Ma & Xin Li & Xiaobo Wang & Liang Wang & Cheng Wu, 2018. "A Coordinated DC Power Support Strategy for Multi-Infeed HVDC Systems," Energies, MDPI, vol. 11(7), pages 1-20, June.
    3. Peng Shen & Lin Guan & Zhenlin Huang & Liang Wu & Zetao Jiang, 2018. "Active-Current Control of Large-Scale Wind Turbines for Power System Transient Stability Improvement Based on Perturbation Estimation Approach," Energies, MDPI, vol. 11(8), pages 1-15, August.
    4. Seungchan Oh & Heewon Shin & Hwanhee Cho & Byongjun Lee, 2018. "Transient Impact Analysis of High Renewable Energy Sources Penetration According to the Future Korean Power Grid Scenario," Sustainability, MDPI, vol. 10(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1108-:d:106447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.