IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p672-d98234.html
   My bibliography  Save this article

An Elastic Charging Service Fee-Based Load Guiding Strategy for Fast Charging Stations

Author

Listed:
  • Shu Su

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Hang Zhao

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Hongzhi Zhang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xiangning Lin

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Compared with the traditional slow charging loads, random integration of large scale fast charging loads will exert more serious impacts on the security of power network operation. Besides, to maximize social benefits, effective scheduling strategies guiding fast charging behaviors should be formulated rather than simply increasing infrastructure construction investments on the power grid. This paper first analyzes the charging users’ various responses to an elastic charging service fee, and introduces the index of charging balance degree to a target region by considering the influence of fast charging loads on the power grid. Then, a multi-objective optimization model of the fast charging service fee is constructed, whose service fee can be further optimized by employing a fuzzy programming method. Therefore, both users’ satisfaction degree and the equilibrium of charging loads can be maintained simultaneously by reasonably guiding electric vehicles (EVs) to different fast charging stations. The simulation results demonstrate the effectiveness of the proposed dynamic charging service pricing and the corresponding fast charging load guidance strategy.

Suggested Citation

  • Shu Su & Hang Zhao & Hongzhi Zhang & Xiangning Lin, 2017. "An Elastic Charging Service Fee-Based Load Guiding Strategy for Fast Charging Stations," Energies, MDPI, vol. 10(5), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:672-:d:98234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    2. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    3. Mackie, P.J. & Jara-Díaz, S. & Fowkes, A.S., 0. "The value of travel time savings in evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 91-106, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    2. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    4. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    5. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    6. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    7. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    8. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    9. Hirte, Georg & Tscharaktschiew, Stefan, 2018. "The impact of anti-congestion policies and the role of labor-supply margins," CEPIE Working Papers 04/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    10. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    11. Tan, Kang Miao & Padmanaban, Sanjeevikumar & Yong, Jia Ying & Ramachandaramurthy, Vigna K., 2019. "A multi-control vehicle-to-grid charger with bi-directional active and reactive power capabilities for power grid support," Energy, Elsevier, vol. 171(C), pages 1150-1163.
    12. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    13. Holz-Rau, Christian & Scheiner, Joachim, 2011. "Safety and travel time in cost-benefit analysis: A sensitivity analysis for North Rhine-Westphalia," Transport Policy, Elsevier, vol. 18(2), pages 336-346, March.
    14. Maria Börjesson & Jonas Eliasson & Mattias Lundberg, 2014. "Is CBA Ranking of Transport Investments Robust?," Journal of Transport Economics and Policy, University of Bath, vol. 48(2), pages 189-204, May.
    15. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    16. Nebiyou Tilahun & David Levinson, 2013. "Selfishness and altruism in the distribution of travel time and income," Transportation, Springer, vol. 40(5), pages 1043-1061, September.
    17. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    18. Muhammad Kashif Rafique & Zunaib Maqsood Haider & Khawaja Khalid Mehmood & Muhammad Saeed Uz Zaman & Muhammad Irfan & Saad Ullah Khan & Chul-Hwan Kim, 2018. "Optimal Scheduling of Hybrid Energy Resources for a Smart Home," Energies, MDPI, vol. 11(11), pages 1-19, November.
    19. Batarce, Marco & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2016. "Valuing crowding in public transport: Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 358-378.
    20. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:672-:d:98234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.