IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p593-d97151.html
   My bibliography  Save this article

Research on Partial Discharge Source Localization Based on an Ultrasonic Array and a Step-by-Step Over-Complete Dictionary

Author

Listed:
  • Shuguo Gao

    (State Grid Hebei Electric Power Research Institute, Shijiazhuang 050021, China)

  • Ying Zhang

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Qing Xie

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Yuqiang Kan

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Si Li

    (Beijing Electric Power Corporation, Beijing 100020, China)

  • Dan Liu

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Fangcheng Lü

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

Partial discharge (PD) in electrical equipment is one of the major causes of electrical insulation failures. Fast and accurate positioning of PD sources allows timely elimination of insulation faults. In order to improve the accuracy of PD detection, this paper mainly studies the direction of arrival (DOA) estimation of PD ultrasonic signals based on a step-by-step over-complete dictionary. The simulation results show that the step by step dictionary can improve the operation speed and save signal processing time. Firstly, a step-by-step over-complete dictionary covering all the angles of space is established according to the expression of the steering vector for a matching pursuit direction finding algorithm, which can save computation time. Then, the step-by-step complete dictionary is set up according to the direction vector, and the atomic precision is respectively set to 10°, 1° and 0.1°. The matching pursuit algorithm is used to carry out the sparse representation of the received data X and select the optimal atom from the step-by-step complete dictionary, and the angle information contained in atoms is DOA of the PD sources. According to the direction finding results, combined with the installation location of the ultrasonic array sensor, the spatial position of a partial discharge source can be obtained using the three platform array location method. Finally, a square ultrasonic array sensor is developed, and an experimental platform for the ultrasonic array detection of partial discharges is set up and used to carry out an experimental study. The results show that the DOA estimation method based on a step-by-step over-complete dictionary can improve the direction finding precision, thereby increasing the subsequent positioning accuracy, and the spatial position estimation error of the PD source obtained under laboratory conditions is about 5 cm, making this a feasible method.

Suggested Citation

  • Shuguo Gao & Ying Zhang & Qing Xie & Yuqiang Kan & Si Li & Dan Liu & Fangcheng Lü, 2017. "Research on Partial Discharge Source Localization Based on an Ultrasonic Array and a Step-by-Step Over-Complete Dictionary," Energies, MDPI, vol. 10(5), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:593-:d:97151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojciech Sikorski & Krzysztof Walczak & Piotr Przybylek, 2016. "Moisture Migration in an Oil-Paper Insulation System in Relation to Online Partial Discharge Monitoring of Power Transformers," Energies, MDPI, vol. 9(12), pages 1-16, December.
    2. Seo, Byungtae, 2017. "The doubly smoothed maximum likelihood estimation for location-shifted semiparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 27-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry A. Ivanov & Marat F. Sadykov & Danil A. Yaroslavsky & Aleksandr V. Golenishchev-Kutuzov & Tatyana G. Galieva, 2021. "Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    2. Wojciech Sikorski, 2018. "Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers," Energies, MDPI, vol. 12(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyan Nie & Xinlao Wei & Yonghong Wang & Qingguo Chen, 2018. "A Study of Electrical Aging of the Turn-to-Turn Oil-Paper Insulation in Transformers with a Step-Stress Method," Energies, MDPI, vol. 11(12), pages 1-16, November.
    2. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    3. Jianwen Huang & Yuanxiang Zhou & Longyu Dong & Zhongliu Zhou & Xiangjun Zeng, 2017. "Enhancing Insulating Performances of Presspaper by Introduction of Nanofibrillated Cellulose," Energies, MDPI, vol. 10(5), pages 1-13, May.
    4. Hubert Moranda & Hanna Moscicka-Grzesiak & Piotr Przybylek & Krzysztof Walczak & Radoslaw Szewczyk, 2020. "Comparative Tests of Partial Discharges in Nomex ® 910 Paper and Cellulose Paper," Energies, MDPI, vol. 13(3), pages 1-8, February.
    5. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    6. Wojciech Sikorski, 2018. "Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers," Energies, MDPI, vol. 12(1), pages 1-27, December.
    7. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    8. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    9. Wojciech Sikorski & Krzysztof Walczak & Wieslaw Gil & Cyprian Szymczak, 2020. "On-Line Partial Discharge Monitoring System for Power Transformers Based on the Simultaneous Detection of High Frequency, Ultra-High Frequency, and Acoustic Emission Signals," Energies, MDPI, vol. 13(12), pages 1-37, June.
    10. Mateusz Cybulski & Piotr Przybylek, 2021. "Application of Molecular Sieves for Drying Transformers Insulated with Mineral Oil, Natural Ester, or Synthetic Ester," Energies, MDPI, vol. 14(6), pages 1-13, March.
    11. Bo Gao & Rui Yu & Guangcai Hu & Cheng Liu & Xin Zhuang & Peng Zhou, 2019. "Development Processes of Surface Trucking and Partial Discharge of Pressboards Immersed in Mineral Oil: Effect of Tip Curvatures," Energies, MDPI, vol. 12(3), pages 1-14, February.
    12. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    13. Chee, Chew-Seng & Seo, Byungtae, 2020. "Semiparametric estimation for linear regression with symmetric errors," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:593-:d:97151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.