IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp31-40.html
   My bibliography  Save this article

Material-flow analysis, energy analysis, and partial environmental-LCA of a district-heating combined heat and power plant in Sweden

Author

Listed:
  • Karlsson, Johan
  • Brunzell, Lena
  • Venkatesh, G.

Abstract

Combined heat and power (CHP) plants are a great improvement over waste-to-energy incineration plants supplying only heat, and power plants supplying only electricity. The primary purpose of a functioning CHP plant however, may be to provide district heating services, and thereby its main output will be heat energy. This paper is a case study commissioned by Karlskoga Energi och Miljö AB (KEMAB in short; Karlskoga Energy and Environment) in the Värmland State of south-central Sweden, and focuses on the functioning of the CHP plant owned and operated by the company. The life-cycles of the fuels used by the CHP – household/industrial waste, bio-oil, light fuel oil, wood waste, wood chips, a slaughterhouse-waste-derived product and peat to generate 202,222 MWh of heat, 119,234 MWh of steam and 28,220 MWh of electricity have been studied, and the carbon footprint calculated for year-2016. Using two sets of emissions factors for the combustion stage of the life-cycle, as part of a data uncertainty analysis, the total emissions were 44,000 tonnes carbon dioxide equivalents (CO2-eq) and 58,000 tonnes CO2-eq respectively. A quasi-realistic scenario analysis in which plastics are not available for incineration and have to be substituted with alternatives has also been carried out, and while wood waste has been suggested as the best alternative with regard to greenhouse gas (GHG) emissions, availability permitting, a combination of alternatives has been mooted as the practical option.

Suggested Citation

  • Karlsson, Johan & Brunzell, Lena & Venkatesh, G., 2018. "Material-flow analysis, energy analysis, and partial environmental-LCA of a district-heating combined heat and power plant in Sweden," Energy, Elsevier, vol. 144(C), pages 31-40.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:31-40
    DOI: 10.1016/j.energy.2017.11.159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uusitalo, V. & Väisänen, S. & Havukainen, J. & Havukainen, M. & Soukka, R. & Luoranen, M., 2014. "Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil," Renewable Energy, Elsevier, vol. 69(C), pages 103-113.
    2. Paiho, Satu & Reda, Francesco, 2016. "Towards next generation district heating in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 915-924.
    3. Persson, Urban & Münster, Marie, 2016. "Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review," Energy, Elsevier, vol. 110(C), pages 116-128.
    4. Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.
    5. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    6. G. Venkatesh, 2014. "A critique of the European Green City Index," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 57(3), pages 317-328, March.
    7. Ola Eriksson & Göran Finnveden, 2017. "Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions," Energies, MDPI, vol. 10(4), pages 1-18, April.
    8. Eriksson, Ola & Finnveden, Goran & Ekvall, Tomas & Bjorklund, Anna, 2007. "Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion," Energy Policy, Elsevier, vol. 35(2), pages 1346-1362, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Wehkamp & Lucas Schmeling & Lena Vorspel & Fabian Roelcke & Kai-Lukas Windmeier, 2020. "District Energy Systems: Challenges and New Tools for Planning and Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    2. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    3. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    4. Giusilene Costa de Souza Pinho & João Luiz Calmon, 2023. "LCA of Wood Waste Management Systems: Guiding Proposal for the Standardization of Studies Based on a Critical Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    5. Francesco Neirotti & Michel Noussan & Marco Simonetti, 2020. "Evaluating the Emissions of the Heat Supplied by District Heating Networks through A Life Cycle Perspective," Clean Technol., MDPI, vol. 2(4), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broberg, Thomas & Dijkgraaf, Elbert & Meens-Eriksson, Sef, 2022. "Burn or let them bury? The net social cost of producing district heating from imported waste," Energy Economics, Elsevier, vol. 105(C).
    2. Leurent, Martin & Da Costa, Pascal & Jasserand, Frédéric & Rämä, Miika & Persson, Urban, 2018. "Cost and climate savings through nuclear district heating in a French urban area," Energy Policy, Elsevier, vol. 115(C), pages 616-630.
    3. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    4. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    5. Hao, Xiaoli & Yang, Hongxing & Zhang, Guoqiang, 2008. "Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong," Energy Policy, Elsevier, vol. 36(10), pages 3662-3673, October.
    6. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
    8. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    9. Siddique, Muhammad Bilal & Nielsen, Per Sieverts & Rosendal, Mathias Berg & Jensen, Ida Græsted & Keles, Dogan, 2023. "Impacts of earlier natural gas phase-out & heat-saving policies on district heating and the energy system," Energy Policy, Elsevier, vol. 174(C).
    10. Ola Eriksson & Göran Finnveden, 2017. "Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions," Energies, MDPI, vol. 10(4), pages 1-18, April.
    11. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    12. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    13. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
    14. Camille Jeandaux & Jean-Baptiste Videau & Anne Prieur-Vernat, 2021. "Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    15. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    16. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    17. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    19. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    20. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:31-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.