IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p529-d95676.html
   My bibliography  Save this article

Comparison of the 60Sn40Pb and 62Sn2Ag36Pb Solders for a PV Ribbon Joint in Photovoltaic Modules Using the Thermal Shock Test

Author

Listed:
  • Min-Soo Kang

    (School of Mechanical Engineering, Chung-Ang University, Seoul 156-756, Korea)

  • Yu-Jae Jeon

    (Department of Automotive, Yeoju Institute of Technology, Gyeonggi-do 12652, Korea)

  • Do-Seok Kim

    (School of Mechanical Engineering, Chung-Ang University, Seoul 156-756, Korea)

  • Young-Eui Shin

    (School of Mechanical Engineering, Chung-Ang University, Seoul 156-756, Korea)

Abstract

In this study, the characteristics of a photovoltaic (PV) ribbon ( t = 0.25 mm) joint with 60Sn40Pb and 62Sn2Ag36Pb solders were evaluated using thermal shock tests. The thermal shock tests were performed under three conditions: −40–65 °C, −40–85 °C, and −40–105 °C. The results of these tests were analyzed using electroluminescence (EL) and cross-sectional images. Following testing, broken metal fingers (MFs) were confirmed near the solder joint. PV module degradation was attributed to the broken finger ratio (BFR) based on quantitative analysis of the dark rectangular (DR) regions on the EL images. In addition, the activation energy of the broken MFs was calculated from the increasing BFR. Thermal characteristic variations due to the added Ag in the PV ribbon solder joints were evaluated through observation of solder micro-structure changes following thermal shock tests.

Suggested Citation

  • Min-Soo Kang & Yu-Jae Jeon & Do-Seok Kim & Young-Eui Shin, 2017. "Comparison of the 60Sn40Pb and 62Sn2Ag36Pb Solders for a PV Ribbon Joint in Photovoltaic Modules Using the Thermal Shock Test," Energies, MDPI, vol. 10(4), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:529-:d:95676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Keh-moh & Lee, Yang-Hsien & Huang, Wen-Yeong & Chen, Guan-ting & Kuo, Yi-Wen & Wang, Li-Kuo & Yang, Sian-Yi, 2015. "Detection of soldering induced damages on crystalline silicon solar modules fabricated by hot-air soldering method," Renewable Energy, Elsevier, vol. 83(C), pages 749-758.
    2. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    3. Henrik Zsiborács & Gábor Pintér & Attila Bai & József Popp & Zoltán Gabnai & Béla Pályi & István Farkas & Nóra Hegedűsné Baranyai & Christian Gützer & Heidelinde Trimmel & Sandro Oswald & Philipp Weih, 2018. "Comparison of Thermal Models for Ground-Mounted South-Facing Photovoltaic Technologies: A Practical Case Study," Energies, MDPI, vol. 11(5), pages 1-18, May.
    4. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    5. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    6. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
    7. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    9. Miller, Ian & Gençer, Emre & Vogelbaum, Hilary S. & Brown, Patrick R. & Torkamani, Sarah & O'Sullivan, Francis M., 2019. "Parametric modeling of life cycle greenhouse gas emissions from photovoltaic power," Applied Energy, Elsevier, vol. 238(C), pages 760-774.
    10. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    11. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    12. Wang, Chaofan & Shuai, Jing & Ding, Liping & Lu, Yang & Chen, Jia, 2022. "Comprehensive benefit evaluation of solar PV projects based on multi-criteria decision grey relation projection method: Evidence from 5 counties in China," Energy, Elsevier, vol. 238(PB).
    13. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    14. Mudan Wang & Xianqiang Mao & Youkai Xing & Jianhong Lu & Peng Song & Zhengyan Liu & Zhi Guo & Kevin Tu & Eric Zusman, 2021. "Breaking down barriers on PV trade will facilitate global carbon mitigation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    15. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    16. Graham Palmer & Joshua Floyd, 2017. "An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-20, December.
    17. Resalati, Shahaboddin & Okoroafor, Tobechi & Maalouf, Amani & Saucedo, Edgardo & Placidi, Marcel, 2022. "Life cycle assessment of different chalcogenide thin-film solar cells," Applied Energy, Elsevier, vol. 313(C).
    18. Billen, Pieter & Leccisi, Enrica & Dastidar, Subham & Li, Siming & Lobaton, Liliana & Spatari, Sabrina & Fafarman, Aaron T. & Fthenakis, Vasilis M. & Baxter, Jason B., 2019. "Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics," Energy, Elsevier, vol. 166(C), pages 1089-1096.
    19. Lowe, R.J. & Drummond, P., 2022. "Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:529-:d:95676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.