IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp1089-1096.html
   My bibliography  Save this article

Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics

Author

Listed:
  • Billen, Pieter
  • Leccisi, Enrica
  • Dastidar, Subham
  • Li, Siming
  • Lobaton, Liliana
  • Spatari, Sabrina
  • Fafarman, Aaron T.
  • Fthenakis, Vasilis M.
  • Baxter, Jason B.

Abstract

Lead halide perovskites (LHP) are an emerging class of photovoltaic (PV) materials that have drawn intense interest due to their power conversion efficiencies above 23% and their potential for low-cost fabrication. However, the toxicity of lead causes concern about its use in LHP-PV at large scales. Here, we quantified lead intensity and toxicity potential of LHP-PV in potential commercial production. Lead intensity in LHP-PV life cycles can be 4 times lower and potential toxic emissions can be 20 times lower than those in representative U.S. electricity mixes, assuming that PV operational lifetimes reach 20 years. We introduce the metric “toxicity potential payback time”, accounting for toxic emissions in the life cycle of energy cycles, and showed that it is < 2 years for perovskite PVs produced by and displacing the same grid mix. The toxicity potential associated with the energy of manufacturing a PV system dominates that associated with release of embodied lead. Therefore, the use of lead should not preclude commercialization of LHP-PVs. Instead, effort should focus on development of low-energy manufacturing processes and long service lifetimes. Additional detailed investigations are needed to quantify the full life cycle of commercial production of perovskites and to minimize potential emissions.

Suggested Citation

  • Billen, Pieter & Leccisi, Enrica & Dastidar, Subham & Li, Siming & Lobaton, Liliana & Spatari, Sabrina & Fafarman, Aaron T. & Fthenakis, Vasilis M. & Baxter, Jason B., 2019. "Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics," Energy, Elsevier, vol. 166(C), pages 1089-1096.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:1089-1096
    DOI: 10.1016/j.energy.2018.10.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218321364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis M., 2004. "Life cycle impact analysis of cadmium in CdTe PV production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 303-334, August.
    2. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    2. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Llanos, M. & Yekani, R. & Demopoulos, G.P. & Basu, N., 2020. "Alternatives assessment of perovskite solar cell materials and their methods of fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Strušnik, Dušan & Brandl, Daniel & Schober, Helmut & Ferčec, Janko & Avsec, Jurij, 2020. "A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    7. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2021. "Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fthenakis, Vasilis & Athias, Clement & Blumenthal, Alyssa & Kulur, Aylin & Magliozzo, Julia & Ng, David, 2020. "Sustainability evaluation of CdTe PV: An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    3. Fthenakis, Vasilis & Wang, Wenming & Kim, Hyung Chul, 2009. "Life cycle inventory analysis of the production of metals used in photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 493-517, April.
    4. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
    5. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    6. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    7. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    8. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    9. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    10. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    11. Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.
    12. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    13. Berger, Wolfgang & Simon, Franz-Georg & Weimann, Karin & Alsema, Erik A., 2010. "A novel approach for the recycling of thin film photovoltaic modules," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 711-718.
    14. Sinha, Parikhit & Kriegner, Christopher J. & Schew, William A. & Kaczmar, Swiatoslav W. & Traister, Matthew & Wilson, David J., 2008. "Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle," Energy Policy, Elsevier, vol. 36(1), pages 381-387, January.
    15. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    16. Asim, Nilofar & Sopian, Kamaruzzaman & Ahmadi, Shideh & Saeedfar, Kasra & Alghoul, M.A. & Saadatian, Omidreza & Zaidi, Saleem H., 2012. "A review on the role of materials science in solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5834-5847.
    17. Songi Kim & Bongju Jeong, 2016. "Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    18. Ornella Malandrino & Daniela Sica & Mario Testa & Stefania Supino, 2017. "Policies and Measures for Sustainable Management of Solar Panel End-of-Life in Italy," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    19. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    20. Wang, Chaofan & Shuai, Jing & Ding, Liping & Lu, Yang & Chen, Jia, 2022. "Comprehensive benefit evaluation of solar PV projects based on multi-criteria decision grey relation projection method: Evidence from 5 counties in China," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:1089-1096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.