IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p406-d93644.html
   My bibliography  Save this article

Research on Unstructured Text Data Mining and Fault Classification Based on RNN-LSTM with Malfunction Inspection Report

Author

Listed:
  • Daqian Wei

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Bo Wang

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Gang Lin

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Dichen Liu

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Zhaoyang Dong

    (School of Electrical Engineering and Telecommunications, University of NSW, Sydney 2052, Australia)

  • Hesen Liu

    (Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA)

  • Yilu Liu

    (Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA)

Abstract

This paper documents the condition-based maintenance (CBM) of power transformers, the analysis of which relies on two basic data groups: structured (e.g., numeric and categorical) and unstructured (e.g., natural language text narratives) which accounts for 80% of data required. However, unstructured data comprised of malfunction inspection reports, as recorded by operation and maintenance of the power grid, constitutes an abundant untapped source of power insights. This paper proposes a method for malfunction inspection report processing by deep learning, which combines the text data mining–oriented recurrent neural networks (RNN) with long short-term memory (LSTM). In this paper, the effectiveness of the RNN-LSTM network for modeling inspection data is established with a straightforward training strategy in which we replicate targets at each sequence step. Then, the corresponding fault labels are given in datasets, in order to calculate the accuracy of fault classification by comparison with the original data labels and output samples. Experimental results can reflect how key parameters may be selected in the configuration of the key variables to achieve optimal results. The accuracy of the fault recognition demonstrates that the method we proposed can provide a more effective way for grid inspection personnel to deal with unstructured data.

Suggested Citation

  • Daqian Wei & Bo Wang & Gang Lin & Dichen Liu & Zhaoyang Dong & Hesen Liu & Yilu Liu, 2017. "Research on Unstructured Text Data Mining and Fault Classification Based on RNN-LSTM with Malfunction Inspection Report," Energies, MDPI, vol. 10(3), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:406-:d:93644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    2. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    3. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    4. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    5. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    6. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    7. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    2. Yixing Wang & Meiqin Liu & Zhejing Bao & Senlin Zhang, 2018. "Short-Term Load Forecasting with Multi-Source Data Using Gated Recurrent Unit Neural Networks," Energies, MDPI, vol. 11(5), pages 1-19, May.
    3. Hongchen Li & Zhong Yang & Jiaming Han & Shangxiang Lai & Qiuyan Zhang & Chi Zhang & Qianhui Fang & Guoxiong Hu, 2020. "TL-Net: A Novel Network for Transmission Line Scenes Classification," Energies, MDPI, vol. 13(15), pages 1-15, July.
    4. Yongcong Luo & Jing Ma & Chi Li, 2020. "Entity name recognition of cross-border e-commerce commodity titles based on TWs-LSTM," Electronic Commerce Research, Springer, vol. 20(2), pages 405-426, June.
    5. Jiyoung Woo & Jaeseok Yun, 2020. "Content Noise Detection Model Using Deep Learning in Web Forums," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    6. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
    7. Kai Chen & Rabea Jamil Mahfoud & Yonghui Sun & Dongliang Nan & Kaike Wang & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Defect Texts Mining of Secondary Device in Smart Substation with GloVe and Attention-Based Bidirectional LSTM," Energies, MDPI, vol. 13(17), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Hualin Xie & Jinlang Zou & Hailing Jiang & Ning Zhang & Yongrok Choi, 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis," Sustainability, MDPI, vol. 6(6), pages 1-17, May.
    3. Stephan E. Maurer & Andrei V. Potlogea, 2021. "Male‐biased Demand Shocks and Women's Labour Force Participation: Evidence from Large Oil Field Discoveries," Economica, London School of Economics and Political Science, vol. 88(349), pages 167-188, January.
    4. Tie Hua Zhou & Ling Wang & Keun Ho Ryu, 2015. "Supporting Keyword Search for Image Retrieval with Integration of Probabilistic Annotation," Sustainability, MDPI, vol. 7(5), pages 1-18, May.
    5. T. Karski, 2019. "Opinions and Controversies in Problem of The So-Called Idiopathic Scoliosis. Information About Etiology, New Classification and New Therapy," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(5), pages 9612-9616, January.
    6. Sung-Won Park & Sung-Yong Son, 2017. "Cost Analysis for a Hybrid Advanced Metering Infrastructure in Korea," Energies, MDPI, vol. 10(9), pages 1-18, September.
    7. Wesley Mendes-da-Silva, 2020. "What Makes an Article be More Cited?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 24(6), pages 507-513.
    8. Martin Valtierra-Rodriguez & Juan Pablo Amezquita-Sanchez & Arturo Garcia-Perez & David Camarena-Martinez, 2019. "Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors," Mathematics, MDPI, vol. 7(9), pages 1-19, August.
    9. Akca Yasar & Gokhan Ozer, 2016. "Determination the Factors that Affect the Use of Enterprise Resource Planning Information System through Technology Acceptance Model," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(10), pages 1-91, September.
    10. Julián Miranda & Angélica Flórez & Gustavo Ospina & Ciro Gamboa & Carlos Flórez & Miguel Altuve, 2020. "Proposal for a System Model for Offline Seismic Event Detection in Colombia," Future Internet, MDPI, vol. 12(12), pages 1-17, December.
    11. Wisdom Akpalu & Mintewab Bezabih, 2015. "Tenure Insecurity, Climate Variability and Renting out Decisions among Female Small-Holder Farmers in Ethiopia," Sustainability, MDPI, vol. 7(6), pages 1-16, June.
    12. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    13. David Harborth & Sebastian Pape, 2020. "Empirically Investigating Extraneous Influences on the “APCO” Model—Childhood Brand Nostalgia and the Positivity Bias," Future Internet, MDPI, vol. 12(12), pages 1-16, December.
    14. Ping Wang & Jie Wang & Guiwu Wei & Cun Wei, 2019. "Similarity Measures of q-Rung Orthopair Fuzzy Sets Based on Cosine Function and Their Applications," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    15. Peterson, Willis L., 1973. "Publication Productivities Of U.S. Economics Department Graduates," Staff Papers 14105, University of Minnesota, Department of Applied Economics.
    16. Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    17. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    18. Vasilyeva, Olga, 2021. "Agro-food clusters in the Republic of Kazakhstan: assessment and prospects of development," Economic Consultant, Roman I. Ostapenko, vol. 34(2), pages 13-20.
    19. Chris Lytridis & Anna Lekova & Christos Bazinas & Michail Manios & Vassilis G. Kaburlasos, 2020. "WINkNN: Windowed Intervals’ Number kNN Classifier for Efficient Time-Series Applications," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    20. Richard J. Ciotola & Jay F. Martin & Juan M. Castańo & Jiyoung Lee & Frederick Michel, 2013. "Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester," Energies, MDPI, vol. 6(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:406-:d:93644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.