IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p95-d87763.html
   My bibliography  Save this article

Dynamic Exergy Analysis for the Thermal Storage Optimization of the Building Envelope

Author

Listed:
  • Valentina Bonetti

    (Energy Systems Research Unit (ESRU), University of Strathclyde, Glasgow G1 1XJ, UK)

  • Georgios Kokogiannakis

    (Sustainable Buildings Research Centre (SBRC), University of Wollongong, Wollongong, NSW 2500, Australia)

Abstract

As a measure of energy “quality”, exergy is meaningful for comparing the potential for thermal storage. Systems containing the same amount of energy could have considerably different capabilities in matching a demand profile, and exergy measures this difference. Exergy stored in the envelope of buildings is central in sustainability because the environment could be an unlimited source of energy if its interaction with the envelope is optimised for maintaining the indoor conditions within comfort ranges. Since the occurring phenomena are highly fluctuating, a dynamic exergy analysis is required; however, dynamic exergy modelling is complex and has not hitherto been implemented in building simulation tools. Simplified energy and exergy assessments are presented for a case study in which thermal storage determines the performance of seven different wall types for utilising nocturnal ventilation as a passive cooling strategy. Hourly temperatures within the walls are obtained with the ESP-r software in free-floating operation and are used to assess the envelope exergy storage capacity. The results for the most suitable wall types were different between the exergy analysis and the more traditional energy performance indicators. The exergy method is an effective technique for selecting the construction type that results in the most favourable free-floating conditions through the analysed passive strategy.

Suggested Citation

  • Valentina Bonetti & Georgios Kokogiannakis, 2017. "Dynamic Exergy Analysis for the Thermal Storage Optimization of the Building Envelope," Energies, MDPI, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:95-:d:87763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/95/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/95/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhijiang & Tian, Zhaofei & Ma, Xiaoyu, 2024. "Dynamic exergy analysis of feed water heater in nuclear power plant during start-up process," Energy, Elsevier, vol. 292(C).
    2. Brenner, Lorenz & Tillenkamp, Frank & Krütli, Markus & Ghiaus, Christian, 2020. "Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants," Applied Energy, Elsevier, vol. 259(C).
    3. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    4. Carlos Fernández Bandera & Ana Fei Muñoz Mardones & Hu Du & Juan Echevarría Trueba & Germán Ramos Ruiz, 2018. "Exergy As a Measure of Sustainable Retrofitting of Buildings," Energies, MDPI, vol. 11(11), pages 1-19, November.
    5. Reini, Mauro & Casisi, Melchiorre, 2020. "The Gouy-Stodola Theorem and the derivation of exergy revised," Energy, Elsevier, vol. 210(C).
    6. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    7. Michel Pons, 2019. "Exergy Analysis and Process Optimization with Variable Environment Temperature," Energies, MDPI, vol. 12(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    3. Guo, Jiwei & Dong, Jiankai & Wang, Hongjue & Wang, Yuan & Zou, Bin & Jiang, Yiqiang, 2022. "Study on the demand response potential of an actively ventilated building: Parametric and scenario analysis," Energy, Elsevier, vol. 238(PC).
    4. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Emmanouil Katsigiannis & Petros Antonios Gerogiannis & Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2023. "Design and Parametric Analysis of a Solar-Driven Façade Active Layer System for Dynamic Insulation and Radiant Heating: A Renovation Solution for Residential Buildings," Energies, MDPI, vol. 16(13), pages 1-18, July.
    6. María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.
    7. Wang, Lin-Shu & Ma, Peizheng, 2016. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings," Applied Energy, Elsevier, vol. 162(C), pages 183-196.
    8. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:95-:d:87763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.