IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2149-d123058.html
   My bibliography  Save this article

Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System

Author

Listed:
  • Nur Hazirah Zaini

    (Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Mohd Zainal Abidin Ab. Kadir

    (Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Mohd Amran Mohd Radzi

    (Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Mahdi Izadi

    (Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Norhafiz Azis

    (Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Nor Izzati Ahmad

    (Centre for Advanced Power and Energy Research (CAPER), Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia)

  • Mohd Solehin Mohd Nasir

    (Department of Electrical & Elecronics Engineering, Faculty of Engineering, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Sg. Besi, 57000 Kuala Lumpur, Malaysia)

Abstract

Solar photovoltaic (PV) farms currently play a vital role in the generation of electrical power in different countries, such as Malaysia, which is moving toward the use of renewable energy. Malaysia is one of the countries with abundant sunlight and thus can use solar PV farms as alternative sources for electricity generation. However, lightning strikes frequently occur in the country. Being installed in open and flat areas, solar PV farms, especially their electronic components, are at great risk of damage caused by lightning. In this paper, the effects of lightning currents with different peak currents and waveshapes on grid-connected solar PV farms were determined to approximate the level of transient effect that can damage solar PV modules, inverters and transformers. Depending on the location of the solar PV farm, engineer can obtain information on the peak current and median current of the site from the lightning location system (LLS) and utilise the results obtained in this study to appropriately assign an SPD to protect the solar panel, inverter and the main panel that connected to the grid. Therefore, the simulation results serve as the basis for controlling the effects of lightning strikes on electrical equipment and power grids where it provides proper justification on the ‘where to be installed’ and ‘what is the rating’ of the SPD. This judgment and decision will surely reduce the expensive cost of repair and replacement of electrical equipment damages due to the lightning.

Suggested Citation

  • Nur Hazirah Zaini & Mohd Zainal Abidin Ab. Kadir & Mohd Amran Mohd Radzi & Mahdi Izadi & Norhafiz Azis & Nor Izzati Ahmad & Mohd Solehin Mohd Nasir, 2017. "Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2149-:d:123058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Treble, Fred, 1998. "Milestones in the development of crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 15(1), pages 473-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoming Wang & Woo-Hyun Kim & Gyung-Suk Kil & Dae-Won Park & Sung-Wook Kim, 2019. "An Intelligent Lightning Warning System Based on Electromagnetic Field and Neural Network," Energies, MDPI, vol. 12(7), pages 1-11, April.
    2. Nurul A. A. Latiff & Hazlee A. Illias & Ab H. A. Bakar & Sameh Z. A. Dabbak, 2018. "Measurement and Modelling of Leakage Current Behaviour in ZnO Surge Arresters under Various Applied Voltage Amplitudes and Pollution Conditions," Energies, MDPI, vol. 11(4), pages 1-16, April.
    3. Mohd Effendi Amran & Mohd Nabil Muhtazaruddin & Firdaus Muhammad-Sukki & Nurul Aini Bani & Tauran Zaidi Ahmad Zaidi & Khairul Azmy Kamaluddin & Jorge Alfredo Ardila-Rey, 2019. "Photovoltaic Expansion-Limit through a Net Energy Metering Scheme for Selected Malaysian Public Hospitals," Sustainability, MDPI, vol. 11(18), pages 1-30, September.
    4. Nor Izzati Ahmad & Zaipatimah Ali & Mohd Zainal Abidin Ab. Kadir & Miszaina Osman & Nur Hazirah Zaini & Muhammad Hakirin Roslan, 2021. "Analysis of Lightning-Induced Voltages Effect with SPD Placement for Sustainable Operation in Hybrid Solar PV-Battery Energy Storage System," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    5. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    6. Kaihua Jiang & Lin Du & Huan Chen & Feng Yang & Yubo Wang, 2019. "Non-Contact Measurement and Polarity Discrimination-Based Identification Method for Direct Lightning Strokes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    7. Ya'acob, M.E. & Lu, Li & Zulkifli, S.A. & Roslan, N. & Ahmad, W.F.H. Wan, 2023. "Agrivoltaic approach in improving soil resistivity in large scale solar farms for energy sustainability," Applied Energy, Elsevier, vol. 352(C).
    8. Carmen B. Rosa & Graciele Rediske & Paula D. Rigo & João Francisco M. Wendt & Leandro Michels & Julio Cezar M. Siluk, 2018. "Development of a Computational Tool for Measuring Organizational Competitiveness in the Photovoltaic Power Plants," Energies, MDPI, vol. 11(4), pages 1-13, April.
    9. Guido Ala & Salvatore Favuzza & Elisa Francomano & Graziella Giglia & Gaetano Zizzo, 2018. "On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids," Energies, MDPI, vol. 11(4), pages 1-16, March.
    10. Hetita, Ibrahim & Zalhaf, Amr S. & Mansour, Diaa-Eldin A. & Han, Yang & Yang, Ping & Wang, Congling, 2022. "Modeling and protection of photovoltaic systems during lightning strikes: A review," Renewable Energy, Elsevier, vol. 184(C), pages 134-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    2. Si Kuan Thio & Sung-Yong Park, 2019. "Dispersive Optical Systems for Highly-Concentrated Solar Spectrum Splitting: Concept, Design, and Performance Analyses," Energies, MDPI, vol. 12(24), pages 1-18, December.
    3. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2149-:d:123058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.