The Techno-Economics of Small-Scale Residential Heating in Low Carbon Futures
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
- Green, R & Staffell, I, 2012.
"The cost of domestic fuel cell micro-CHP systems,"
Working Papers
10044/3/9844, Imperial College, London, Imperial College Business School.
- Green, R & Staffell, I, 2012. "The cost of domestic fuel cell micro-CHP systems," Working Papers 10044/2/9844, Imperial College, London, Imperial College Business School.
- Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
- Chiodi, Alessandro & Gargiulo, Maurizio & Rogan, Fionn & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system," Energy Policy, Elsevier, vol. 53(C), pages 169-189.
- Henning, Dag, 1997. "MODEST—An energy-system optimisation model applicable to local utilities and countries," Energy, Elsevier, vol. 22(12), pages 1135-1150.
- Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
- Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
- Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
- Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
- González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
- Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008.
"Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach,"
Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
- Fabien A. Roques & David M. Newbery & William J. Nuttall, 2006. "Fuel mix diversification incentives in liberalised electricity markets: a Mean-Variance Portfolio Theory Approach," Working Papers EPRG 0626, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
- Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
- Chaudry, Modassar & Abeysekera, Muditha & Hosseini, Seyed Hamid Reza & Jenkins, Nick & Wu, Jianzhong, 2015. "Uncertainties in decarbonising heat in the UK," Energy Policy, Elsevier, vol. 87(C), pages 623-640.
- Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
- Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.
- Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
- Salci, Sener & Jenkins, Glenn P., 2018. "An economic analysis for the design of ipp contracts for grid-connected renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2410-2420.
- Haro, Pedro & Johnsson, Filip & Thunman, Henrik, 2016. "Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment," Energy, Elsevier, vol. 101(C), pages 380-389.
- Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
- Good, Nicholas & Martínez Ceseña, Eduardo A. & Zhang, Lingxi & Mancarella, Pierluigi, 2016. "Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems," Applied Energy, Elsevier, vol. 167(C), pages 158-172.
- Herrando, María & Markides, Christos N., 2016. "Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations," Applied Energy, Elsevier, vol. 161(C), pages 512-532.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mitterrutzner, Benjamin & Callegher, Claudio Zandonella & Fraboni, Riccardo & Wilczynski, Eric & Pezzutto, Simon, 2023. "Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries," Energy, Elsevier, vol. 284(C).
- Pavel Atănăsoae, 2018. "The Operating Strategies of Small-Scale Combined Heat and Power Plants in Liberalized Power Markets," Energies, MDPI, vol. 11(11), pages 1-16, November.
- Vijay, Avinash & Hawkes, Adam, 2018. "Impact of dynamic aspects on economics of fuel cell based micro co-generation in low carbon futures," Energy, Elsevier, vol. 155(C), pages 874-886.
- Vijay, Avinash & Hawkes, Adam, 2019. "Demand side flexibility from residential heating to absorb surplus renewables in low carbon futures," Renewable Energy, Elsevier, vol. 138(C), pages 598-609.
- Agata Ołtarzewska & Dorota Anna Krawczyk, 2022. "Analysis of the Influence of Selected Factors on Heating Costs and Pollutant Emissions in a Cold Climate Based on the Example of a Service Building Located in Bialystok," Energies, MDPI, vol. 15(23), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vijay, Avinash & Hawkes, Adam, 2018. "Impact of dynamic aspects on economics of fuel cell based micro co-generation in low carbon futures," Energy, Elsevier, vol. 155(C), pages 874-886.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
- Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
- Jalil-Vega, F. & Hawkes, A.D., 2018. "Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs," Applied Energy, Elsevier, vol. 210(C), pages 1051-1072.
- Haghi, Ehsan & Qadrdan, Meysam & Wu, Jianzhong & Jenkins, Nick & Fowler, Michael & Raahemifar, Kaamran, 2020. "An iterative approach for optimal decarbonization of electricity and heat supply systems in the Great Britain," Energy, Elsevier, vol. 201(C).
- Zhu, K. & Victoria, M. & Andresen, G.B. & Greiner, M., 2020. "Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil-free electricity, heating and cooling system in Europe," Applied Energy, Elsevier, vol. 262(C).
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Andreas Bloess & Wolf-Peter Schill & Alexander Zerrahn, 2017. "Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials," Discussion Papers of DIW Berlin 1677, DIW Berlin, German Institute for Economic Research.
- Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
- Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
- Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
- Lynch, Muireann & Devine, Mel T. & Bertsch, Valentin, 2019. "The role of power-to-gas in the future energy system: Market and portfolio effects," Energy, Elsevier, vol. 185(C), pages 1197-1209.
- Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
- Lynch, Muireann Á & Devine, Mel & Bertsch, Valentin, 2018. "The role of power-to-gas in the future energy system: how much is needed and who wants to invest?," Papers WP590, Economic and Social Research Institute (ESRI).
- Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
- Schreiner, Lena & Madlener, Reinhard, 2022.
"Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany,"
Energy Economics, Elsevier, vol. 107(C).
- Schreiner, Lena & Madlener, Reinhard, 2019. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," FCN Working Papers 11/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Apr 2020.
- Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
- Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
More about this item
Keywords
heating; decarbonisation; energy systems modelling; optimization; mixed integer linear program;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1915-:d:119736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.