IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1585-d114750.html
   My bibliography  Save this article

Energy Consumption and Energy-Related CO 2 Emissions from China’s Petrochemical Industry Based on an Environmental Input-Output Life Cycle Assessment

Author

Listed:
  • Lu Meng

    (School of Business Administration, China University of Petroleum-Beijing, Beijing 102249, China)

  • Jalel Sager

    (Energy and Resources Group, University of California-Berkeley, Berkeley, CA 94720, USA)

Abstract

The fast-growing petrochemical industry is one of the largest energy consumers and emitters in China, exerting a strong impact on the national economic, energy and environmental systems. We provide a holistic picture of energy consumption and energy-related CO 2 emissions from China’s petrochemical industry in 2012 through an environmental input-output life-cycle assessment (EIO-LCA). We combine two perspectives: (1) direct energy consumption and emissions, and (2) the indirect energy and emissions embodied and reallocated from other sectors in the supply chain to satisfy final demand in the petrochemical industry. Results indicate that the total of its direct and indirect energy consumption and CO 2 emissions accounts for approximately 32% and 18% of China’s industrial total, respectively, exerting high “influence” and “induction” with regards to the rest of the economic sectors. Most of the petrochemical industry’s embodied energy and CO 2 emissions comes from the “Production and Supply of Electric and Heat Power”. We also identified five other sectors key to China’s energy conservation and CO 2 mitigation efforts due to their high influence and induction effects: “Smelting and Pressing of Ferrous Metals”, “Manufacture of Non-metallic Mineral Products”, “Smelting and Pressing of Non-ferrous Metals”, “Transport, Storage and Post”, and “Mining and Washing of Coal”. A systematic view of direct and indirect energy, environmental relationships, and the conveying effects among sectors is crucial for policymaking in China to achieve its energy and mitigation goals.

Suggested Citation

  • Lu Meng & Jalel Sager, 2017. "Energy Consumption and Energy-Related CO 2 Emissions from China’s Petrochemical Industry Based on an Environmental Input-Output Life Cycle Assessment," Energies, MDPI, vol. 10(10), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1585-:d:114750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    2. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
    3. Zhaohua Wang & Wei Liu & Jianhua Yin, 2015. "Driving forces of indirect carbon emissions from household consumption in China: an input–output decomposition analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 257-272, February.
    4. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    5. Xing Wu & Zhihui Zhang, 2005. "Input-output analysis of the Chinese construction sector," Construction Management and Economics, Taylor & Francis Journals, vol. 23(9), pages 905-912.
    6. Tijun Fan & Ruiling Luo & Haiyang Xia & Xiaopeng Li, 2015. "Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 319-332, February.
    7. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aishuang Zhou & Jinsheng Zhou & Jingjian Si & Guoyu Wang, 2023. "Study on Embodied CO 2 Emissions and Transfer Pathways of Chinese Industries," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    2. Herui Cui & Ruirui Wu & Tian Zhao, 2018. "Decomposition and Forecasting of CO 2 Emissions in China’s Power Sector Based on STIRPAT Model with Selected PLS Model and a Novel Hybrid PLS-Grey-Markov Model," Energies, MDPI, vol. 11(11), pages 1-19, November.
    3. Duc Long Luong & Quang Trung Nguyen & Anh Duc Pham & Quynh Chau Truong & Minh Quan Duong, 2020. "Building a Decision-Making Support Framework for Installing Solar Panels on Vertical Glazing Façades of the Building Based on the Life Cycle Assessment and Environmental Benefit Analysis," Energies, MDPI, vol. 13(9), pages 1-20, May.
    4. Yong Shi & Anda Tang & Tongsheng Yao, 2022. "A Study on Inter-Provincial Environmental Pollution Movement in China Based on the Input–Output Method," Energies, MDPI, vol. 15(18), pages 1-19, September.
    5. Fei Wang & Liming Liu & Yili Yu & Gang Li & Jessica Li & Miadreza Shafie-khah & João P. S. Catalão, 2018. "Impact Analysis of Customized Feedback Interventions on Residential Electricity Load Consumption Behavior for Demand Response," Energies, MDPI, vol. 11(4), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.
    2. Xi Chen & Yingying Zhen & Zhanming Chen, 2023. "Household Carbon Footprint Characteristics and Driving Factors: A Global Comparison Based on a Dynamic Input–Output Model," Energies, MDPI, vol. 16(9), pages 1-18, May.
    3. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    4. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    5. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    6. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    7. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    8. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    9. Yongke Yuan & Yixing Wang & Yuanying Chi & Feng Jin, 2020. "Identification of Key Carbon Emission Sectors and Analysis of Emission Effects in China," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    10. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    11. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    12. Jieming Chou & Fan Yang & Zhongxiu Wang & Wenjie Dong, 2021. "The Impact on Carbon Emissions of China with the Trade Situation versus the U.S," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    13. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    14. Zheng, Hongmei & Li, Aimin & Meng, Fanxin & Liu, Gengyuan, 2020. "Energy flows embodied in China's interregional trade: Case study of Hebei Province," Ecological Modelling, Elsevier, vol. 428(C).
    15. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    16. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    17. Zheng Wang & Shaojian Wang & Chuanhao Lu & Lei Hu, 2022. "Which Factors Influence the Regional Difference of Urban–Rural Residential CO 2 Emissions? A Case Study by Cross-Regional Panel Analysis in China," Land, MDPI, vol. 11(5), pages 1-19, April.
    18. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    19. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    20. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1585-:d:114750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.