IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1546-d114318.html
   My bibliography  Save this article

Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid

Author

Listed:
  • Nadeem Javaid

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Fahim Ahmed

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Ibrar Ullah

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan
    University of Engineering and Technology Peshawar, Bannu 28100, Pakistan)

  • Samia Abid

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Wadood Abdul

    (Pervasive and Mobile Computing, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia)

  • Atif Alamri

    (Pervasive and Mobile Computing, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia)

  • Ahmad S. Almogren

    (Pervasive and Mobile Computing, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia)

Abstract

In a smart grid, several optimization techniques have been developed to schedule load in the residential area. Most of these techniques aim at minimizing the energy consumption cost and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak energy consumption. In this regard, we implement and analyse the performance of a traditional dynamic programming (DP) technique and two heuristic optimization techniques: genetic algorithm (GA) and binary particle swarm optimization (BPSO) for residential load management. Based on these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as to optimize the desired objective function. In order to alleviate the complexity of the problem, the multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and analysed to develop a relationship between power consumption, electricity cost, and user discomfort. The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover, results also show a phenomenal reduction in peak power consumption.

Suggested Citation

  • Nadeem Javaid & Fahim Ahmed & Ibrar Ullah & Samia Abid & Wadood Abdul & Atif Alamri & Ahmad S. Almogren, 2017. "Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid," Energies, MDPI, vol. 10(10), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1546-:d:114318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2016. "Power demand control scenarios for smart grid applications with finite number of appliances," Applied Energy, Elsevier, vol. 162(C), pages 83-98.
    2. Kusakana, Kanzumba, 2017. "Energy management of a grid-connected hydrokinetic system under Time of Use tariff," Renewable Energy, Elsevier, vol. 101(C), pages 1325-1333.
    3. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    4. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    5. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Ihsan Ullah & Muhammad Babar Rasheed & Thamer Alquthami & Shahzadi Tayyaba, 2019. "A Residential Load Scheduling with the Integration of On-Site PV and Energy Storage Systems in Micro-Grid," Sustainability, MDPI, vol. 12(1), pages 1-36, December.
    3. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awais Manzoor & Nadeem Javaid & Ibrar Ullah & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2017. "An Intelligent Hybrid Heuristic Scheme for Smart Metering based Demand Side Management in Smart Homes," Energies, MDPI, vol. 10(9), pages 1-28, August.
    2. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    3. Muqaddas Naz & Zafar Iqbal & Nadeem Javaid & Zahoor Ali Khan & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2018. "Efficient Power Scheduling in Smart Homes Using Hybrid Grey Wolf Differential Evolution Optimization Technique with Real Time and Critical Peak Pricing Schemes," Energies, MDPI, vol. 11(2), pages 1-25, February.
    4. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    5. Pierre Bernhard & Marc Deschamps, 2017. "Kalman on dynamics and contro, Linear System Theory, Optimal Control, and Filter," Working Papers 2017-10, CRESE.
    6. Jones, Randall E. & Cacho, Oscar J., 2000. "A Dynamic Optimisation Model of Weed Control," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123685, Australian Agricultural and Resource Economics Society.
    7. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    8. Pam Norton & Ravi Phatarfod, 2008. "Optimal Strategies In One-Day Cricket," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(04), pages 495-511.
    9. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    10. Tan, Madeleine Sui-Lay, 2016. "Policy coordination among the ASEAN-5: A global VAR analysis," Journal of Asian Economics, Elsevier, vol. 44(C), pages 20-40.
    11. D. W. K. Yeung, 2008. "Dynamically Consistent Solution For A Pollution Management Game In Collaborative Abatement With Uncertain Future Payoffs," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 517-538.
    12. Crutchfield, Stephen R. & Brazee, Richard J., 1990. "An Integrated Model of Surface and Ground Water Quality," 1990 Annual meeting, August 5-8, Vancouver, Canada 271011, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    14. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    15. Eric D. Gould, 2008. "Marriage and Career: The Dynamic Decisions of Young Men," Journal of Human Capital, University of Chicago Press, vol. 2(4), pages 337-378.
    16. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    17. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    18. Dmitri Blueschke & Ivan Savin, 2015. "No such thing like perfect hammer: comparing different objective function specifications for optimal control," Jena Economics Research Papers 2015-005, Friedrich-Schiller-University Jena.
    19. Sieniutycz, Stanislaw, 2015. "Synthesizing modeling of power generation and power limits in energy systems," Energy, Elsevier, vol. 84(C), pages 255-266.
    20. Miller, Marcus & Papi, Laura, 1997. "The 'laissez faire' bias of managed floating," Journal of International Money and Finance, Elsevier, vol. 16(6), pages 989-1000, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1546-:d:114318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.