IDEAS home Printed from https://ideas.repec.org/a/gam/jecomi/v9y2021i4p205-d706937.html
   My bibliography  Save this article

A Machine Learning Pipeline for Forecasting Time Series in the Banking Sector

Author

Listed:
  • Olga Gorodetskaya

    (Department of Data Analysis and Machine Learning, Financial University under the Government of the Russian Federation, 125167 Moscow, Russia)

  • Yana Gobareva

    (Department of Data Analysis and Machine Learning, Financial University under the Government of the Russian Federation, 125167 Moscow, Russia)

  • Mikhail Koroteev

    (Department of Data Analysis and Machine Learning, Financial University under the Government of the Russian Federation, 125167 Moscow, Russia)

Abstract

The problem of forecasting time series is very widely debated. In recent years, machine learning algorithms have been very prolific in this area. This paper describes a systematic approach to building a machine learning predictive model for solving optimization problems in the banking sector. A literature analysis on applying such methods in this particular area is presented. As a direct result of the described research, a universal scenario for forecasting various non-stationary time series in automatic mode was developed. The developed scenario for solving specific banking tasks to improve business efficiency, including optimizing demand for ATMs, forecasting the load on the call center and cash center, is considered. A machine learning methodology in economics that can yield robust and reproducible results and can be reused in solving other similar tasks is described. The methodology described in the article was tested on three cases and showed the ability to generate models that are superior in accuracy to similar predictive models described in the literature by at least three percentage points. This article will be helpful to specialists dealing with the problem of forecasting economic time series and students and researchers due to a large number of links to systematic literature reviews on this topic.

Suggested Citation

  • Olga Gorodetskaya & Yana Gobareva & Mikhail Koroteev, 2021. "A Machine Learning Pipeline for Forecasting Time Series in the Banking Sector," Economies, MDPI, vol. 9(4), pages 1-15, December.
  • Handle: RePEc:gam:jecomi:v:9:y:2021:i:4:p:205-:d:706937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7099/9/4/205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7099/9/4/205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venkatesh, Kamini & Ravi, Vadlamani & Prinzie, Anita & Poel, Dirk Van den, 2014. "Cash demand forecasting in ATMs by clustering and neural networks," European Journal of Operational Research, Elsevier, vol. 232(2), pages 383-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesc Solanellas & Joshua Muñoz & Josep Petchamé, 2022. "An Examination of Ticket Pricing in a Multidisciplinary Sports Mega-Event," Economies, MDPI, vol. 10(12), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
    2. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    3. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    4. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    5. Suder, Marcin & Gurgul, Henryk & Barbosa, Belem & Machno, Artur & Lach, Łukasz, 2024. "Effectiveness of ATM withdrawal forecasting methods under different market conditions," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    6. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    7. Ágoston, Kolos Cs. & Benedek, Gábor & Gilányi, Zsolt, 2016. "Pareto improvement and joint cash management optimisation for banks and cash-in-transit firms," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1074-1082.
    8. Miriyala, Srinivas Soumitri & Subramanian, Venkat & Mitra, Kishalay, 2018. "TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study," European Journal of Operational Research, Elsevier, vol. 264(1), pages 294-309.
    9. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    10. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:9:y:2021:i:4:p:205-:d:706937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.