IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i2p25-d146317.html
   My bibliography  Save this article

Recent Developments in Macro-Econometric Modeling: Theory and Applications

Author

Listed:
  • Gilles Dufrénot

    (Faculty of Economics and Management, Aix-Marseille School of Economics, 13205 Marseille, France)

  • Fredj Jawadi

    (Department of Finance, University of Evry-Paris Saclay, 2 rue du Facteur Cheval, 91025 Évry, France)

  • Alexander Mihailov

    (Department of Economics, University of Reading, Whiteknights, Reading RG6 6AA, UK)

Abstract

Developments in macro-econometrics have been evolving since the aftermath of the Second World War.[...]

Suggested Citation

  • Gilles Dufrénot & Fredj Jawadi & Alexander Mihailov, 2018. "Recent Developments in Macro-Econometric Modeling: Theory and Applications," Econometrics, MDPI, vol. 6(2), pages 1-5, May.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:25-:d:146317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/2/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/2/25/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    2. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    3. A. W. Phillips, 1958. "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861–1957," Economica, London School of Economics and Political Science, vol. 25(100), pages 283-299, November.
    4. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    5. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    6. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    7. Barnett, William A., 2012. "Getting it Wrong: How Faulty Monetary Statistics Undermine the Fed, the Financial System, and the Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262516888, April.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biolsi, Christopher, 2023. "Do the Hamilton and Beveridge–Nelson filters provide the same information about output gaps? An empirical comparison for practitioners," Journal of Macroeconomics, Elsevier, vol. 75(C).
    2. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    6. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    7. Manuel M. F. Martins & Fabio Verona, 2020. "Forecasting Inflation with the New Keynesian Phillips Curve: Frequency Matters," CEF.UP Working Papers 2001, Universidade do Porto, Faculdade de Economia do Porto.
    8. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    9. Manuel M. F. Martins & Fabio Verona, 2021. "Inflation Dynamics and Forecast: Frequency Matters," CEF.UP Working Papers 2101, Universidade do Porto, Faculdade de Economia do Porto.
    10. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    11. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
    12. Sune Karlsson & Pär Österholm, 2020. "A note on the stability of the Swedish Phillips curve," Empirical Economics, Springer, vol. 59(6), pages 2573-2612, December.
    13. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    14. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    15. Dahlquist, Magnus & Hasseltoft, Henrik, 2020. "Economic momentum and currency returns," Journal of Financial Economics, Elsevier, vol. 136(1), pages 152-167.
    16. Fernandes, Mário Correia & Dutra, Tiago Mota & Dias, José Carlos & Teixeira, João C.A., 2023. "Modelling output gaps in the Euro Area with structural breaks: The COVID-19 recession," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1046-1058.
    17. repec:zbw:bofrdp:2021_008 is not listed on IDEAS
    18. Xyngis, Georgios, 2017. "Business-cycle variation in macroeconomic uncertainty and the cross-section of expected returns: Evidence for scale-dependent risks," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 43-65.
    19. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
    20. Sadaba, Barbara & Vujić, Sunčica & Maier, Sofia, 2024. "Characterizing the schooling cycle," Economic Modelling, Elsevier, vol. 132(C).
    21. Biolsi, Christopher, 2021. "Labor productivity forecasts based on a Beveridge–Nelson filter: Is there statistical evidence for a slowdown?," Journal of Macroeconomics, Elsevier, vol. 69(C).

    More about this item

    Keywords

    n/a;

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C - Mathematical and Quantitative Methods
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:25-:d:146317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.