IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v12y2024i4p31-d1514210.html
   My bibliography  Save this article

Exploring the Role of Global Value Chain Position in Economic Models for Bankruptcy Forecasting

Author

Listed:
  • Mélanie Croquet

    (Belgium-Soci&ter and Risk Research Institutes, Warocqué School of Business and Economics, University of Mons, BE-7000 Mons, Belgium)

  • Loredana Cultrera

    (Belgium-Soci&ter and Risk Research Institutes, Warocqué School of Business and Economics, University of Mons, BE-7000 Mons, Belgium)

  • Dimitri Laroutis

    (ESC Amiens, Centre de Recherche en Risk Management and Soci&ter Research Institute, FR-80000 Amiens, France)

  • Laetitia Pozniak

    (Belgium-Soci&ter and Risk Research Institutes, Warocqué School of Business and Economics, University of Mons, BE-7000 Mons, Belgium)

  • Guillaume Vermeylen

    (CEBRIG and DULBEA Research Institutes, Warocqué School of Business and Economics, Belgium-Soci&ter, University of Mons, BE-7000 Mons, Belgium)

Abstract

This study addresses a significant gap in the literature by comparing the effectiveness of traditional statistical methods with artificial intelligence (AI) techniques in predicting bankruptcy among small and medium-sized enterprises (SMEs). Traditional bankruptcy prediction models often fail to account for the unique characteristics of SMEs, such as their vulnerability due to lean structures and reliance on short-term credit. This research utilizes a comprehensive database of 7104 Belgian SMEs to evaluate these models. Belgium was selected due to its unique regulatory and economic environment, which presents specific challenges and opportunities for bankruptcy prediction in SMEs. Our findings reveal that AI techniques significantly outperform traditional statistical methods in predicting bankruptcy, demonstrating superior predictive accuracy. Furthermore, our analysis highlights that a firm’s position within the Global Value Chain (GVC) impacts prediction accuracy. Specifically, firms operating upstream in the production process show lower prediction performance, suggesting that bankruptcy risk may propagate upward along the value chain. This effect was measured by analyzing the firm’s GVC position as a variable in the prediction models, with upstream firms exhibiting greater vulnerability to the financial distress of downstream partners. These insights are valuable for practitioners, emphasizing the need to consider specific performance factors based on the firm’s position within the GVC when assessing bankruptcy risk. By integrating both AI techniques and GVC positioning into bankruptcy prediction models, this study provides a more nuanced understanding of bankruptcy risks for SMEs and offers practical guidance for managing and mitigating these risks.

Suggested Citation

  • Mélanie Croquet & Loredana Cultrera & Dimitri Laroutis & Laetitia Pozniak & Guillaume Vermeylen, 2024. "Exploring the Role of Global Value Chain Position in Economic Models for Bankruptcy Forecasting," Econometrics, MDPI, vol. 12(4), pages 1-19, November.
  • Handle: RePEc:gam:jecnmx:v:12:y:2024:i:4:p:31-:d:1514210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/12/4/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/12/4/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    2. Rafael Becerra-Vicario & David Alaminos & Eva Aranda & Manuel A. Fernández-Gámez, 2020. "Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    3. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    4. Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
    5. Christopher Gerling & Stefan Lessmann, 2023. "Multimodal Document Analytics for Banking Process Automation," Papers 2307.11845, arXiv.org, revised Nov 2023.
    6. Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    7. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    8. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    9. Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Nov 2024.
    10. Azadi, Majid & Yousefi, Saeed & Farzipoor Saen, Reza & Shabanpour, Hadi & Jabeen, Fauzia, 2023. "Forecasting sustainability of healthcare supply chains using deep learning and network data envelopment analysis," Journal of Business Research, Elsevier, vol. 154(C).
    11. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    12. Henri Arno & Klaas Mulier & Joke Baeck & Thomas Demeester, 2022. "Next-Year Bankruptcy Prediction from Textual Data: Benchmark and Baselines," Papers 2208.11334, arXiv.org.
    13. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    14. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    15. Shuangyan Li & Guangrui Wang & Yongli Luo, 2022. "Tone of language, financial disclosure, and earnings management: a textual analysis of form 20-F," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    16. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    17. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    18. Jiang, Cuiqing & Lyu, Ximei & Yuan, Yufei & Wang, Zhao & Ding, Yong, 2022. "Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1086-1099.
    19. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    20. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:12:y:2024:i:4:p:31-:d:1514210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.