IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v10y2006i1p1-10.html
   My bibliography  Save this article

Pareto Tail Index Estimation Revisited

Author

Listed:
  • Mark Finkelstein
  • Howard G. Tucker
  • Jerry Alan Veeh

Abstract

An estimator of the tail index of a Pareto distribution is given that is based on the use of the probability integral transform. This new estimator provides performance that is comparable to the best robust estimators, while retaining conceptual and computational simplicity. A tuning parameter in the new estimator can be adjusted to control the tradeoff between robustness and efficiency. The method used to compute the estimator also can be used to find a confidence interval for the tail index that is guaranteed to have the nominal confidence level for any given sample size. Guidelines for the use of the new estimator are provided.

Suggested Citation

  • Mark Finkelstein & Howard G. Tucker & Jerry Alan Veeh, 2006. "Pareto Tail Index Estimation Revisited," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 1-10.
  • Handle: RePEc:taf:uaajxx:v:10:y:2006:i:1:p:1-10
    DOI: 10.1080/10920277.2006.10596236
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2006.10596236
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2006.10596236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2021. "Measuring income inequality: A robust semi-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    3. Silvia De Nicol`o & Maria Rosaria Ferrante & Silvia Pacei, 2021. "Mind the Income Gap: Bias Correction of Inequality Estimators in Small-Sized Samples," Papers 2107.08950, arXiv.org, revised May 2023.
    4. Frederico Caeiro & Mina Norouzirad, 2024. "Comparing Estimation Methods for the Power–Pareto Distribution," Econometrics, MDPI, vol. 12(3), pages 1-28, July.
    5. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2019. "A robust and efficient estimator for the tail index of inverse Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 431-439.
    6. Felix Koenig, 2023. "Technical Change and Superstar Effects: Evidence from the Rollout of Television," American Economic Review: Insights, American Economic Association, vol. 5(2), pages 207-223, June.
    7. Beran, Jan & Schell, Dieter, 2012. "On robust tail index estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3430-3443.
    8. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "A robust semi-parametric approach for measuring income inequality in Malaysia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1-13.
    9. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    10. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    11. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "Optimal threshold for Pareto tail modelling in the presence of outliers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 169-180.
    12. Jan Beran & Dieter Schell & Milan Stehlík, 2014. "The harmonic moment tail index estimator: asymptotic distribution and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 193-220, February.
    13. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Muhammad Hilmi Abdul Majid, 2020. "Robust Reliability Estimation for Lindley Distribution—A Probability Integral Transform Statistical Approach," Mathematics, MDPI, vol. 8(9), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:10:y:2006:i:1:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.