IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i2p547-563.html
   My bibliography  Save this article

Joint patient selection and scheduling under no‐shows: Theory and application in proton therapy

Author

Listed:
  • Soroush Saghafian
  • Nikolaos Trichakis
  • Ruihao Zhu
  • Helen A. Shih

Abstract

We study how to admit and schedule heterogeneous patients by using simple, interpretable, yet effective policies when capacity is scarce, no‐show behavior is patient‐ and time‐dependent, service duration and reward are deterministic but patient‐dependent, and overtime is costly. Our work is motivated by the aforementioned operational challenges that typically face adopters of new technologies in the healthcare sector. We anchor our study on a partnership with the proton therapy center of Massachusetts General Hospital (MGH), which offers a new radiation technology for cancer patients. We formulate the problem as a nonlinear integer optimization problem. However, as the solution to this formulation lacks both tractability and interpretability, to be relevant to practice, we limit our study to simple and interpretable policies. In particular, we propose a simple index‐based rule and derive analytical performance guarantees for it. We also calibrate our model using empirical data from our partner hospital, and conduct a series of experiments to evaluate the performance of our proposed policy under practical circumstances. The analytical performance guarantees and our numerical experiments demonstrate (a) the strong performance of the proposed policies, and (b) their robustness to various practical considerations (e.g., to potential misspecification of no‐show probabilities). Our results show that our proposed policy, despite being a simple and interpretable index‐based rule, is capable of improving performance by about 20% at an organization such as MGH, and of delivering results that are not far from being optimal across a wide range of parameters that might vary between organizations. This suggests that the proposed policy can be viewed as an effective “one‐fits‐all” capacity allocation rule that can be used in a variety of environments in which operational challenges such as no‐shows and overtime costs need to be navigated using simple and interpretable rules.

Suggested Citation

  • Soroush Saghafian & Nikolaos Trichakis & Ruihao Zhu & Helen A. Shih, 2023. "Joint patient selection and scheduling under no‐shows: Theory and application in proton therapy," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 547-563, February.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:2:p:547-563
    DOI: 10.1111/poms.13886
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13886
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    2. Jonathan E. Helm & Mark P. Van Oyen, 2014. "Design and Optimization Methods for Elective Hospital Admissions," Operations Research, INFORMS, vol. 62(6), pages 1265-1282, December.
    3. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    4. Mehmet A. Begen & Maurice Queyranne, 2011. "Appointment Scheduling with Discrete Random Durations," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 240-257, May.
    5. Ariel Kulik & Hadas Shachnai & Tami Tamir, 2013. "Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 729-739, November.
    6. Wen-Ya Wang & Diwakar Gupta, 2014. "Nurse Absenteeism and Staffing Strategies for Hospital Inpatient Units," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 439-454, July.
    7. Bo Zeng & Ayten Turkcan & Ji Lin & Mark Lawley, 2010. "Clinic scheduling models with overbooking for patients with heterogeneous no-show probabilities," Annals of Operations Research, Springer, vol. 178(1), pages 121-144, July.
    8. Soroush Saghafian & Wallace J. Hopp & Mark P. Van Oyen & Jeffrey S. Desmond & Steven L. Kronick, 2014. "Complexity-Augmented Triage: A Tool for Improving Patient Safety and Operational Efficiency," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 329-345, July.
    9. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    10. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    11. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    12. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    2. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    3. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    4. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    5. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    6. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    7. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    8. Saghafian, Soroush & Trichakis, Nikolaos & Zhu, Ruihao & Shih, Helen A., 2019. "Joint Patient Selection and Scheduling under No-Shows: Theory and Application in Proton Therapy," Working Paper Series rwp19-019, Harvard University, John F. Kennedy School of Government.
    9. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.
    10. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    11. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    12. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    13. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    14. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    15. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    16. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    17. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    18. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    19. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    20. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:2:p:547-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.