IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0237126.html
   My bibliography  Save this article

Bayesian inference of COVID-19 spreading rates in South Africa

Author

Listed:
  • Rendani Mbuvha
  • Tshilidzi Marwala

Abstract

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for performing accurate inference with limited data. Fundamental to the design of rapid state responses is the ability to perform epidemiological model parameter inference for localised trajectory predictions. In this work, we perform Bayesian parameter inference using Markov Chain Monte Carlo (MCMC) methods on the Susceptible-Infected-Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological models with time-varying spreading rates for South Africa. The results find two change points in the spreading rate of COVID-19 in South Africa as inferred from the confirmed cases. The first change point coincides with state enactment of a travel ban and the resultant containment of imported infections. The second change point coincides with the start of a state-led mass screening and testing programme which has highlighted community-level disease spread that was not well represented in the initial largely traveller based and private laboratory dominated testing data. The results further suggest that due to the likely effect of the national lockdown, community level transmissions are slower than the original imported case driven spread of the disease.

Suggested Citation

  • Rendani Mbuvha & Tshilidzi Marwala, 2020. "Bayesian inference of COVID-19 spreading rates in South Africa," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0237126
    DOI: 10.1371/journal.pone.0237126
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237126
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0237126&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0237126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nataliya Shakhovska & Ivan Izonin & Nataliia Melnykova, 2021. "The Hierarchical Classifier for COVID-19 Resistance Evaluation," Data, MDPI, vol. 6(1), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0237126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.