IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v4y2019i3p127-d260635.html
   My bibliography  Save this article

NILMPEds: A Performance Evaluation Dataset for Event Detection Algorithms in Non-Intrusive Load Monitoring

Author

Listed:
  • Lucas Pereira

    (ITI, LARSyS, 9020-105 Funchal, Portugal
    Ténico Lisboa, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

Abstract

Datasets are important for researchers to build models and test how these perform, as well as to reproduce research experiments from others. This data paper presents the NILM Performance Evaluation dataset (NILMPEds), which is aimed primarily at research reproducibility in the field of Non-intrusive load monitoring. This initial release of NILMPEds is dedicated to event detection algorithms and is comprised of ground-truth data for four test datasets, the specification of 47,950 event detection models, the power events returned by each model in the four test datasets, and the performance of each individual model according to 31 performance metrics.

Suggested Citation

  • Lucas Pereira, 2019. "NILMPEds: A Performance Evaluation Dataset for Event Detection Algorithms in Non-Intrusive Load Monitoring," Data, MDPI, vol. 4(3), pages 1-9, August.
  • Handle: RePEc:gam:jdataj:v:4:y:2019:i:3:p:127-:d:260635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/4/3/127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/4/3/127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paula Meehan & Conor McArdle & Stephen Daniels, 2014. "An Efficient, Scalable Time-Frequency Method for Tracking Energy Usage of Domestic Appliances Using a Two-Step Classification Algorithm," Energies, MDPI, vol. 7(11), pages 1-26, October.
    2. Stephen Makonin & Z. Jane Wang & Chris Tumpach, 2018. "RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis," Data, MDPI, vol. 3(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Stasiuk & Dominika Maison, 2022. "The Influence of New and Old Energy Labels on Consumer Judgements and Decisions about Household Appliances," Energies, MDPI, vol. 15(4), pages 1-13, February.
    2. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    3. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    4. Benjamin Völker & Andreas Reinhardt & Anthony Faustine & Lucas Pereira, 2021. "Watt’s up at Home? Smart Meter Data Analytics from a Consumer-Centric Perspective," Energies, MDPI, vol. 14(3), pages 1-21, January.
    5. Wei Fan & Nian Liu & Jianhua Zhang, 2016. "An Event-Triggered Online Energy Management Algorithm of Smart Home: Lyapunov Optimization Approach," Energies, MDPI, vol. 9(5), pages 1-24, May.
    6. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    7. Altaf Hussain & Muhammad Aleem, 2018. "GoCJ: Google Cloud Jobs Dataset for Distributed and Cloud Computing Infrastructures," Data, MDPI, vol. 3(4), pages 1-12, September.
    8. Esa, Nur Farahin & Abdullah, Md Pauzi & Hassan, Mohammad Yusri, 2016. "A review disaggregation method in Non-intrusive Appliance Load Monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 163-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:4:y:2019:i:3:p:127-:d:260635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.