IDEAS home Printed from https://ideas.repec.org/a/gam/jbusin/v1y2021i1p5-71d575806.html
   My bibliography  Save this article

Geo-Marketing Segmentation with Deep Learning

Author

Listed:
  • Oussama Benbrahim Ansari

    (Triagon Academy Munich, School of Business and Law, Steinheilstrasse 5, 85737 Ismaning, Germany)

Abstract

Spatial clustering is a fundamental instrument in modern geo-marketing. The complexity of handling of high-dimensional and geo-referenced data in the context of distribution networks imposes important challenges for marketers to catch the right customer segments with useful pattern similarities. The increasing availability of the geo-referenced data also places more pressure on the existing geo-marketing methods and makes it more difficult to detect hidden or non-linear relationships between the variables. In recent years, artificial neural networks have been established in different disciplines such as engineering, medical diagnosis, or finance, to solve complex problems due to their high performance and accuracy. The purpose of this paper is to perform a market segmentation by using unsupervised deep learning with self-organizing maps in the B2B industrial automation market across the United States. The results of this study demonstrate a high clustering performance (4 × 4 neurons) as well as a significant dimensionality reduction by using self-organizing maps. The high level of visualization of the maps out of the initially unorganized data set allows a comprehensive interpretation of the different clusters and patterns across space. The centroids of the clusters have been identified as footprints for assigning new marketing channels to ensure a better market coverage.

Suggested Citation

  • Oussama Benbrahim Ansari, 2021. "Geo-Marketing Segmentation with Deep Learning," Businesses, MDPI, vol. 1(1), pages 1-21, June.
  • Handle: RePEc:gam:jbusin:v:1:y:2021:i:1:p:5-71:d:575806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7116/1/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7116/1/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuxin Chen & Xinxin Li & Monic Sun, 2017. "Competitive Mobile Geo Targeting," Marketing Science, INFORMS, vol. 36(5), pages 666-682, September.
    2. Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
    3. Annika H. Holmbom & Tomas Eklund & Barbro Back, 2011. "Customer portfolio analysis using the SOM," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 8(4), pages 396-412.
    4. Baye, Irina & Reiz, Tim & Sapi, Geza, 2018. "Customer recognition and mobile geo-targeting," DICE Discussion Papers 285, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    2. Muhammad Nur Firdaus Nasir & Iqbal Jaapar & Walid Muhmmad Syafrien Effendi & Fadly Mohamed Sharif & Khairulwafi Mamat & Nurul Farhana Nasir, 2024. "Exploring the Role of Artificial Intelligence in the Design Industry: Client Satisfaction through Enhancing Quality while Preserving Human Creativity," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(3s), pages 4538-4543, October.
    3. Sameer Mehta & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2020. "Sustaining a Good Impression: Mechanisms for Selling Partitioned Impressions at Ad Exchanges," Information Systems Research, INFORMS, vol. 31(1), pages 126-147, March.
    4. Ivana Diana, 2024. "HRM Algorithms and Value Creation Through AI in Training and Development," Studia Universitatis Babeș-Bolyai Oeconomica, Sciendo, vol. 69(3), pages 14-23.
    5. Ding, Bin & Li, Yameng & Miah, Shah & Liu, Wei, 2024. "Customer acceptance of frontline social robots—Human-robot interaction as boundary condition," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    6. Erik Hermann, 2022. "Anthropomorphized artificial intelligence, attachment, and consumer behavior," Marketing Letters, Springer, vol. 33(1), pages 157-162, March.
    7. Wang, Wei & Li, Gang & Fung, Richard Y.K. & Cheng, T.C.E., 2019. "Mobile Advertising and Traffic Conversion: The Effects of Front Traffic and Spatial Competition," Journal of Interactive Marketing, Elsevier, vol. 47(C), pages 84-101.
    8. Poushneh, Atieh & Vasquez-Parraga, Arturo & Gearhart, Richard S., 2024. "The effect of empathetic response and consumers’ narcissism in voice-based artificial intelligence," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    9. Lars Meyer-Waarden & Julien Cloarec, 2022. "“Baby, you can drive my car”: Psychological antecedents that drive consumers’ adoption of AI-powered autonomous vehicles," Post-Print hal-03385891, HAL.
    10. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    11. Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
    12. Yao, Qi & Hu, Chao & Zhou, Wenkai, 2024. "The impact of customer privacy concerns on service robot adoption intentions: A credence/experience service typology perspective," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    13. Roggeveen, Anne L. & Rosengren, Sara, 2022. "From customer experience to human experience: Uses of systematized and non-systematized knowledge," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    14. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    15. Ho, Xuan Huong & Nguyen, Dong Phong & Cheng, Julian Ming Sung & Le, Angelina Nhat Hanh, 2022. "Customer engagement in the context of retail mobile apps: A contingency model integrating spatial presence experience and its drivers," Journal of Retailing and Consumer Services, Elsevier, vol. 66(C).
    16. Rahman, Muhammad Sabbir & Bag, Surajit & Hossain, Md Afnan & Abdel Fattah, Fadi Abdel Muniem & Gani, Mohammad Osman & Rana, Nripendra P., 2023. "The new wave of AI-powered luxury brands online shopping experience: The role of digital multisensory cues and customers’ engagement," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    17. Cong-Minh Dinh & Sungjun (Steven) Park, 2024. "How to increase consumer intention to use Chatbots? An empirical analysis of hedonic and utilitarian motivations on social presence and the moderating effects of fear across generations," Electronic Commerce Research, Springer, vol. 24(4), pages 2427-2467, December.
    18. Wondwesen Tafesse & Bronwyn Wood, 2024. "Hey ChatGPT: an examination of ChatGPT prompts in marketing," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(4), pages 790-805, December.
    19. Baye, Irina & Reiz, Tim & Sapi, Geza, 2018. "Customer recognition and mobile geo-targeting," DICE Discussion Papers 285, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    20. Shimi Naurin Ahmad & Michel Laroche, 2023. "Extracting marketing information from product reviews: a comparative study of latent semantic analysis and probabilistic latent semantic analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 662-676, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jbusin:v:1:y:2021:i:1:p:5-71:d:575806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.